模式化光电镊子:一种用于选择、移动和存储介电粒子和细胞的新方案。

Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells.

机构信息

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.

Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.

出版信息

Small. 2018 Nov;14(45):e1803342. doi: 10.1002/smll.201803342. Epub 2018 Oct 11.

Abstract

Optical micromanipulation has become popular for a wide range of applications. In this work, a new type of optical micromanipulation platform, patterned optoelectronic tweezers (p-OET), is introduced. In p-OET devices, the photoconductive layer (that is continuous in a conventional OET device) is patterned, forming regions in which the electrode layer is locally exposed. It is demonstrated that micropatterns in the photoconductive layer are useful for repelling unwanted particles/cells, and also for keeping selected particles/cells in place after turning off the light source, minimizing light-induced heating. To clarify the physical mechanism behind these effects, systematic simulations are carried out, which indicate the existence of strong nonuniform electric fields at the boundary of micropatterns. The simulations are consistent with experimental observations, which are explored for a wide variety of geometries and conditions. It is proposed that the new technique may be useful for myriad applications in the rapidly growing area of optical micromanipulation.

摘要

光学微操控已经在广泛的应用中得到了普及。在这项工作中,我们引入了一种新型的光学微操控平台,即图案化光电镊子(p-OET)。在 p-OET 器件中,对光导层(在传统的 OET 器件中是连续的)进行图案化处理,形成局部暴露电极层的区域。实验证明,光导层中的微图案可用于排斥不需要的颗粒/细胞,并且在关闭光源后也可用于保持选定的颗粒/细胞在原位,从而最小化光诱导加热。为了阐明这些效应背后的物理机制,我们进行了系统的模拟,结果表明在微图案的边界处存在强非均匀电场。模拟结果与广泛的几何形状和条件下的实验观察结果一致。我们提出,这项新技术可能在快速发展的光学微操控领域的众多应用中具有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索