School of Information Science and Engineering, Central South University, Changsha, China.
PLoS One. 2013 May 7;8(5):e62975. doi: 10.1371/journal.pone.0062975. Print 2013.
Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the rarity of known drug-protein interactions and no experimentally verified negative drug-target interaction sample. Furthermore, target proteins need also to be predicted for some new drugs without any known target interaction information. In this paper, a semi-supervised learning method NetCBP is presented to address this problem by using labeled and unlabeled interaction information. Assuming coherent interactions between the drugs ranked by their relevance to a query drug, and the target proteins ranked by their relevance to the hidden target proteins of the query drug, we formulate a learning framework maximizing the rank coherence with respect to the known drug-target interactions. When applied to four classes of important drug-target interaction networks, our method improves previous methods in terms of cross-validation and some strongly predicted interactions are confirmed by the publicly accessible drug target databases, which indicates the usefulness of our method. Finally, a comprehensive prediction of drug-target interactions enables us to suggest many new potential drug-target interactions for further studies.
药物与其靶蛋白之间相互作用的计算预测对于药物发现和设计非常重要。开发用于预测此类潜在相互作用的计算方法的难点在于已知药物-蛋白相互作用的稀有性和没有经过实验验证的负药物-靶标相互作用样本。此外,还需要对一些没有已知靶标相互作用信息的新药物进行靶标蛋白预测。在本文中,提出了一种半监督学习方法 NetCBP,通过使用标记和未标记的相互作用信息来解决这个问题。假设通过查询药物的相关性对药物进行排序,通过查询药物的隐藏靶标蛋白的相关性对靶蛋白进行排序,我们制定了一个学习框架,该框架在已知的药物-靶标相互作用的基础上最大化排序一致性。当应用于四类重要的药物-靶标相互作用网络时,我们的方法在交叉验证方面优于以前的方法,并且一些强烈预测的相互作用被公开可访问的药物靶标数据库所证实,这表明了我们方法的有效性。最后,对药物-靶标相互作用的综合预测使我们能够提出许多新的潜在药物-靶标相互作用供进一步研究。