Xia Zheng, Wu Ling-Yun, Zhou Xiaobo, Wong Stephen T C
Bioinformatics and Bioengineering Program, The Methodist Hospital Research Institute, Weill Medical College, Cornell University, Houston, TX 77030, USA.
BMC Syst Biol. 2010 Sep 13;4 Suppl 2(Suppl 2):S6. doi: 10.1186/1752-0509-4-S2-S6.
Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised learning method is presented to tackle this issue by using labeled and unlabeled information which often generates better results than using the labeled data alone. Furthermore, our semi-supervised learning method integrates known drug-protein interaction network information as well as chemical structure and genomic sequence data.
Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel, GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets databases such as KEGG.
We report encouraging results of using our method for drug-protein interaction network reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.
从异质生物数据源预测药物 - 蛋白质相互作用是计算机辅助药物发现的关键步骤。该预测任务的难点在于已知药物 - 蛋白质相互作用的稀缺性以及大量待预测的未知相互作用。为应对这一挑战,提出了一种流形正则化半监督学习方法,通过使用有标签和无标签信息来解决该问题,这种方法通常比仅使用有标签数据能产生更好的结果。此外,我们的半监督学习方法整合了已知的药物 - 蛋白质相互作用网络信息以及化学结构和基因组序列数据。
使用所提出的方法,我们在酶、离子通道、G蛋白偶联受体和核受体数据集上预测了某些药物 - 蛋白质相互作用。其中一些已被最新的公开可用药物靶点数据库(如KEGG)所证实。
我们报告了使用我们的方法进行药物 - 蛋白质相互作用网络重建的令人鼓舞的结果,这可能为分子相互作用推断和市售药物的新用途提供线索。