Suppr超能文献

基于网络推断的药物-靶标相互作用预测和药物重定位。

Prediction of drug-target interactions and drug repositioning via network-based inference.

机构信息

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.

出版信息

PLoS Comput Biol. 2012;8(5):e1002503. doi: 10.1371/journal.pcbi.1002503. Epub 2012 May 10.

Abstract

Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.

摘要

药物-靶点相互作用(DTI)是药物发现和设计的基础。通过实验确定 DTI 既耗时又昂贵。因此,有必要开发用于预测潜在 DTI 的计算方法。基于复杂网络理论,本文开发了三种有监督的推理方法来预测 DTI,并将其用于药物重定位,即基于药物的相似性推理(DBSI)、基于靶点的相似性推理(TBSI)和基于网络的推理(NBI)。其中,NBI 在四个基准数据集上表现最佳。然后,基于 12483 种 FDA 批准和实验性药物-靶点二元联系,使用 NBI 创建了一个药物-靶点网络,并进一步预测了一些新的 DTI。体外检测证实,五种旧药物,即孟鲁司特、双氯芬酸、辛伐他汀、酮康唑和伊曲康唑,在雌激素受体或二肽基肽酶-IV 上具有多效性特征,半最大抑制或有效浓度范围为 0.2 至 10µM。此外,辛伐他汀和酮康唑在 MTT 测定中对人 MDA-MB-231 乳腺癌细胞系表现出很强的增殖抑制活性。结果表明,这些方法可以成为预测 DTI 和药物重定位的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec5/3349722/82eaa1eb4336/pcbi.1002503.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验