Suppr超能文献

基于竞争的多维建模提高乳腺癌生存分析。

Improving breast cancer survival analysis through competition-based multidimensional modeling.

机构信息

IBM TJ Watson Research, Yorktown Heights, New York, USA.

出版信息

PLoS Comput Biol. 2013;9(5):e1003047. doi: 10.1371/journal.pcbi.1003047. Epub 2013 May 9.

Abstract

Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually. As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently. Understanding the difference in prognosis for breast cancer based on its molecular and phenotypic features is one avenue for improving treatment by matching the proper treatment with molecular subtypes of the disease. In this work, we employed a competition-based approach to modeling breast cancer prognosis using large datasets containing genomic and clinical information and an online real-time leaderboard program used to speed feedback to the modeling team and to encourage each modeler to work towards achieving a higher ranked submission. We find that machine learning methods combined with molecular features selected based on expert prior knowledge can improve survival predictions compared to current best-in-class methodologies and that ensemble models trained across multiple user submissions systematically outperform individual models within the ensemble. We also find that model scores are highly consistent across multiple independent evaluations. This study serves as the pilot phase of a much larger competition open to the whole research community, with the goal of understanding general strategies for model optimization using clinical and molecular profiling data and providing an objective, transparent system for assessing prognostic models.

摘要

乳腺癌是女性最常见的恶性肿瘤,每年导致数十万人死亡。与大多数癌症一样,它是一种异质性疾病,不同的乳腺癌亚型需要不同的治疗方法。了解基于分子和表型特征的乳腺癌预后差异是通过将适当的治疗方法与疾病的分子亚型相匹配来改善治疗的一种途径。在这项工作中,我们采用了基于竞争的方法,使用包含基因组和临床信息的大型数据集以及在线实时排行榜程序来对乳腺癌预后进行建模,该程序用于向建模团队提供快速反馈,并鼓励每位建模者努力实现排名更高的提交。我们发现,与当前最佳方法相比,机器学习方法与基于专家先验知识选择的分子特征相结合可以提高生存预测,并且跨多个用户提交训练的集成模型系统优于集成中的单个模型。我们还发现,模型评分在多个独立评估中高度一致。这项研究是一项向整个研究社区开放的更大规模竞赛的试点阶段,目的是了解使用临床和分子分析数据进行模型优化的一般策略,并提供一个客观、透明的预后模型评估系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f06c/3649990/2811ddeff380/pcbi.1003047.g001.jpg

相似文献

1
Improving breast cancer survival analysis through competition-based multidimensional modeling.
PLoS Comput Biol. 2013;9(5):e1003047. doi: 10.1371/journal.pcbi.1003047. Epub 2013 May 9.
2
Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
J Biomed Inform. 2015 Aug;56:220-8. doi: 10.1016/j.jbi.2015.05.019. Epub 2015 Jun 3.
3
Design and multiseries validation of a web-based gene expression assay for predicting breast cancer recurrence and patient survival.
J Mol Diagn. 2011 May;13(3):297-304. doi: 10.1016/j.jmoldx.2010.12.003. Epub 2011 Mar 31.
4
Mixture classification model based on clinical markers for breast cancer prognosis.
Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.
5
NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
Bioinformatics. 2015 Oct 15;31(20):3330-8. doi: 10.1093/bioinformatics/btv374. Epub 2015 Jun 18.
6
An ensemble machine learning approach to predict survival in breast cancer.
Int J Comput Biol Drug Des. 2008;1(3):275-94. doi: 10.1504/ijcbdd.2008.021422.
7
Reviewing ensemble classification methods in breast cancer.
Comput Methods Programs Biomed. 2019 Aug;177:89-112. doi: 10.1016/j.cmpb.2019.05.019. Epub 2019 May 20.
8
A hybrid approach to survival model building using integration of clinical and molecular information in censored data.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Jul-Aug;9(4):1091-1105. doi: 10.1109/TCBB.2012.31.
9
A novel model to combine clinical and pathway-based transcriptomic information for the prognosis prediction of breast cancer.
PLoS Comput Biol. 2014 Sep 18;10(9):e1003851. doi: 10.1371/journal.pcbi.1003851. eCollection 2014 Sep.

引用本文的文献

2
Pre-operative prediction of BCR-free survival with mRNA variables in prostate cancer.
PLoS One. 2024 Oct 1;19(10):e0311162. doi: 10.1371/journal.pone.0311162. eCollection 2024.
3
Results of the National Breast Cancer Screening Program in Croatia (2006-2016).
Croat Med J. 2022 Aug 31;63(4):326-334. doi: 10.3325/cmj.2022.63.326.
4
Ten quick tips for biomarker discovery and validation analyses using machine learning.
PLoS Comput Biol. 2022 Aug 11;18(8):e1010357. doi: 10.1371/journal.pcbi.1010357. eCollection 2022 Aug.
5
Spherical Convolutional Neural Networks for Survival Rate Prediction in Cancer Patients.
Front Oncol. 2022 Apr 27;12:870457. doi: 10.3389/fonc.2022.870457. eCollection 2022.
6
Cohort and Trajectory Analysis in Multi-Agent Support Systems for Cancer Survivors.
J Med Syst. 2021 Nov 11;45(12):109. doi: 10.1007/s10916-021-01770-3.
7
A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing.
Nat Commun. 2021 Nov 11;12(1):6512. doi: 10.1038/s41467-021-26788-6.
8
A framework for validating AI in precision medicine: considerations from the European ITFoC consortium.
BMC Med Inform Decis Mak. 2021 Oct 2;21(1):274. doi: 10.1186/s12911-021-01634-3.
9
INCISOR: An Algorithm to Identify Synthetic Rescue Mediators of Resistance to Targeted and Immunotherapy.
Methods Mol Biol. 2021;2381:203-215. doi: 10.1007/978-1-0716-1740-3_11.
10
Accurate cancer phenotype prediction with AKLIMATE, a stacked kernel learner integrating multimodal genomic data and pathway knowledge.
PLoS Comput Biol. 2021 Apr 16;17(4):e1008878. doi: 10.1371/journal.pcbi.1008878. eCollection 2021 Apr.

本文引用的文献

1
Prize-based contests can provide solutions to computational biology problems.
Nat Biotechnol. 2013 Feb;31(2):108-11. doi: 10.1038/nbt.2495.
2
A large-scale evaluation of computational protein function prediction.
Nat Methods. 2013 Mar;10(3):221-7. doi: 10.1038/nmeth.2340. Epub 2013 Jan 27.
3
Wisdom of crowds for robust gene network inference.
Nat Methods. 2012 Jul 15;9(8):796-804. doi: 10.1038/nmeth.2016.
4
The landscape of cancer genes and mutational processes in breast cancer.
Nature. 2012 May 16;486(7403):400-4. doi: 10.1038/nature11017.
5
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.
Nature. 2012 Apr 18;486(7403):346-52. doi: 10.1038/nature10983.
6
Industrial methodology for process verification in research (IMPROVER): toward systems biology verification.
Bioinformatics. 2012 May 1;28(9):1193-201. doi: 10.1093/bioinformatics/bts116. Epub 2012 Mar 14.
7
Developing predictive molecular maps of human disease through community-based modeling.
Nat Genet. 2012 Jan 27;44(2):127-30. doi: 10.1038/ng.1089.
8
Most random gene expression signatures are significantly associated with breast cancer outcome.
PLoS Comput Biol. 2011 Oct;7(10):e1002240. doi: 10.1371/journal.pcbi.1002240. Epub 2011 Oct 20.
9
The self-assessment trap: can we all be better than average?
Mol Syst Biol. 2011 Oct 11;7:537. doi: 10.1038/msb.2011.70.
10
Assemblathon 1: a competitive assessment of de novo short read assembly methods.
Genome Res. 2011 Dec;21(12):2224-41. doi: 10.1101/gr.126599.111. Epub 2011 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验