Suppr超能文献

单细胞和宏基因组分析表明,OP9 谱系成员具有发酵和糖化的生活方式。

Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage.

机构信息

School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada 89154-4004, USA.

出版信息

Nat Commun. 2013;4:1854. doi: 10.1038/ncomms2884.

Abstract

OP9 is a yet-uncultivated bacterial lineage found in geothermal systems, petroleum reservoirs, anaerobic digesters and wastewater treatment facilities. Here we use single-cell and metagenome sequencing to obtain two distinct, nearly complete OP9 genomes, one constructed from single cells sorted from hot spring sediments and the other derived from binned metagenomic contigs from an in situ-enriched cellulolytic, thermophilic community. Phylogenomic analyses support the designation of OP9 as a candidate phylum for which we propose the name 'Atribacteria'. Although a plurality of predicted proteins is most similar to those from Firmicutes, the presence of key genes suggests a diderm cell envelope. Metabolic reconstruction from the core genome suggests an anaerobic lifestyle based on sugar fermentation by Embden-Meyerhof glycolysis with production of hydrogen, acetate and ethanol. Putative glycohydrolases and an endoglucanase may enable catabolism of (hemi)cellulose in thermal environments. This study lays a foundation for understanding the physiology and ecological role of the 'Atribacteria'.

摘要

OP9 是一种尚未培养的细菌谱系,存在于地热系统、石油储层、厌氧消化器和废水处理设施中。在这里,我们使用单细胞和宏基因组测序获得了两个截然不同的、几乎完整的 OP9 基因组,一个是从温泉沉积物中分离的单个细胞构建的,另一个是从原位富集的纤维素分解、嗜热群落的分类基因组 contigs 中衍生的。系统发育基因组分析支持将 OP9 指定为候选门,我们建议将其命名为“Atribacteria”。尽管大多数预测蛋白与厚壁菌门最相似,但关键基因的存在表明存在双菌细胞壁。从核心基因组进行的代谢重建表明,一种基于糖发酵的厌氧生活方式,通过 Embden-Meyerhof 糖酵解产生氢气、乙酸和乙醇。推测的糖水解酶和内切葡聚糖酶可能使(半)纤维素在热环境中发生代谢。这项研究为理解“Atribacteria”的生理学和生态作用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191a/3878185/12b9c2a8edbd/nihms-467752-f0001.jpg

相似文献

3
Anaerobic hydrocarbon degradation in candidate phylum 'Atribacteria' (JS1) inferred from genomics.
ISME J. 2019 Sep;13(9):2377-2390. doi: 10.1038/s41396-019-0448-2. Epub 2019 Jun 6.
6
Uncultivated thermophiles: current status and spotlight on 'Aigarchaeota'.
Curr Opin Microbiol. 2015 Jun;25:136-45. doi: 10.1016/j.mib.2015.06.008. Epub 2015 Jun 23.
8
Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters.
ISME J. 2016 Oct;10(10):2352-64. doi: 10.1038/ismej.2016.43. Epub 2016 Apr 8.
9
Global Distribution Patterns and Pangenomic Diversity of the Candidate Phylum "Latescibacteria" (WS3).
Appl Environ Microbiol. 2017 May 1;83(10). doi: 10.1128/AEM.00521-17. Print 2017 May 15.
10
Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere.
ISME J. 2020 Mar;14(3):659-675. doi: 10.1038/s41396-019-0557-y. Epub 2019 Nov 21.

引用本文的文献

1
bio-stimulation for enhanced biological methane production and its effect on the microbiome of CBM wells in Raniganj block, India.
Front Bioeng Biotechnol. 2025 Jun 27;13:1571653. doi: 10.3389/fbioe.2025.1571653. eCollection 2025.
2
Origin and Evolution of Bacterial Periplasmic Force Transducers.
Mol Biol Evol. 2025 Jun 4;42(6). doi: 10.1093/molbev/msaf138.
3
Persistent functional and taxonomic groups dominate an 8,000-year sedimentary sequence from Lake Cadagno, Switzerland.
Front Microbiol. 2025 Feb 3;16:1504355. doi: 10.3389/fmicb.2025.1504355. eCollection 2025.
4
The dynamic history of prokaryotic phyla: discovery, diversity and division.
Int J Syst Evol Microbiol. 2024 Sep;74(9). doi: 10.1099/ijsem.0.006508.
5
Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution.
Nat Rev Microbiol. 2025 Jan;23(1):41-56. doi: 10.1038/s41579-024-01088-0. Epub 2024 Aug 28.
7
Biological functions of endophytic bacteria in 'Hongsen.
Front Microbiol. 2023 Aug 9;14:1128727. doi: 10.3389/fmicb.2023.1128727. eCollection 2023.
8
FACS-iChip: a high-efficiency iChip system for microbial 'dark matter' mining.
Mar Life Sci Technol. 2020 Sep 30;3(2):162-168. doi: 10.1007/s42995-020-00067-7. eCollection 2021 May.
9
10
Functional characterization of prokaryotic dark matter: the road so far and what lies ahead.
Curr Res Microb Sci. 2022 Aug 7;3:100159. doi: 10.1016/j.crmicr.2022.100159. eCollection 2022.

本文引用的文献

1
Insights into the phylogeny and coding potential of microbial dark matter.
Nature. 2013 Jul 25;499(7459):431-7. doi: 10.1038/nature12352. Epub 2013 Jul 14.
3
A Single-cell genome for Thiovulum sp.
Appl Environ Microbiol. 2012 Dec;78(24):8555-63. doi: 10.1128/AEM.02314-12. Epub 2012 Sep 28.
4
Genomic sequencing of uncultured microorganisms from single cells.
Nat Rev Microbiol. 2012 Sep;10(9):631-40. doi: 10.1038/nrmicro2857.
5
Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem.
PLoS One. 2012;7(6):e38108. doi: 10.1371/journal.pone.0038108. Epub 2012 Jun 4.
6
Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes.
Biochemistry. 2012 Jun 5;51(22):4390-6. doi: 10.1021/bi300504v. Epub 2012 May 21.
7
A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem.
PLoS One. 2012;7(1):e30559. doi: 10.1371/journal.pone.0030559. Epub 2012 Jan 27.
8
Decontamination of MDA reagents for single cell whole genome amplification.
PLoS One. 2011;6(10):e26161. doi: 10.1371/journal.pone.0026161. Epub 2011 Oct 20.
9
Genomic analysis at the single-cell level.
Annu Rev Genet. 2011;45:431-45. doi: 10.1146/annurev-genet-102209-163607. Epub 2011 Sep 19.
10
Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma).
Appl Environ Microbiol. 2011 Nov;77(21):7804-14. doi: 10.1128/AEM.06059-11. Epub 2011 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验