Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA.
Appl Environ Microbiol. 2019 May 2;85(10). doi: 10.1128/AEM.00110-19. Print 2019 May 15.
Recent experimental and bioinformatic advances enable the recovery of genomes belonging to yet-uncultured microbial lineages directly from environmental samples. Here, we report on the recovery and characterization of single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) representing candidate phylum LCP-89, previously defined based on 16S rRNA gene sequences. Analysis of LCP-89 genomes recovered from Zodletone Spring, an anoxic spring in Oklahoma, predicts slow-growing, rod-shaped organisms. LCP-89 genomes contain genes for cell wall lipopolysaccharide (LPS) production but lack the entire machinery for peptidoglycan biosynthesis, suggesting an atypical cell wall structure. The genomes, however, encode S-layer homology domain-containing proteins, as well as machinery for the biosynthesis of CMP-legionaminate, inferring the possession of an S-layer glycoprotein. A nearly complete chemotaxis machinery coupled to the absence of flagellar synthesis and assembly genes argues for the utilization of alternative types of motility. A strict anaerobic lifestyle is predicted, with dual respiratory (nitrite ammonification) and fermentative capacities. Predicted substrates include a wide range of sugars and sugar alcohols and a few amino acids. The capability of rhamnose metabolism is confirmed by the identification of bacterial microcompartment genes to sequester the toxic intermediates generated. Comparative genomic analysis identified differences in oxygen sensitivities, respiratory capabilities, substrate utilization preferences, and fermentation end products between LCP-89 genomes and those belonging to its four sister phyla (, SM32-31, AABM5-125-24, and KSB1) within the broader FCB () superphylum. Our results provide a detailed characterization of members of the candidate division LCP-89 and highlight the importance of reconciling 16S rRNA-based and genome-based phylogenies. Our understanding of the metabolic capacities, physiological preferences, and ecological roles of yet-uncultured microbial phyla is expanding rapidly. Two distinct approaches are currently being utilized for characterizing microbial communities in nature: amplicon-based 16S rRNA gene surveys for community characterization and metagenomics/single-cell genomics for detailed metabolic reconstruction. The occurrence of multiple yet-uncultured bacterial phyla has been documented using 16S rRNA surveys, and obtaining genome representatives of these yet-uncultured lineages is critical to our understanding of the role of yet-uncultured organisms in nature. This study provides a genomics-based analysis highlighting the structural features and metabolic capacities of a yet-uncultured bacterial phylum (LCP-89) previously identified in 16S rRNA surveys for which no prior genomes have been described. Our analysis identifies several interesting structural features for members of this phylum, e.g., lack of peptidoglycan biosynthetic machinery and the ability to form bacterial microcompartments. Predicted metabolic capabilities include degradation of a wide range of sugars, anaerobic respiratory capacity, and fermentative capacities. In addition to the detailed structural and metabolic analysis provided for candidate division LCP-89, this effort represents an additional step toward a unified scheme for microbial taxonomy by reconciling 16S rRNA gene-based and genomics-based taxonomic outlines.
最近的实验和生物信息学进展使得直接从环境样本中回收属于未培养微生物谱系的基因组成为可能。在这里,我们报告了代表候选门 LCP-89 的单扩增基因组 (SAG) 和宏基因组组装基因组 (MAG) 的回收和特征,该候选门是基于 16S rRNA 基因序列定义的。对从俄克拉荷马州缺氧泉 Zodletone Spring 回收的 LCP-89 基因组的分析预测,这些微生物生长缓慢,呈杆状。LCP-89 基因组包含细胞壁脂多糖 (LPS) 产生的基因,但缺乏肽聚糖生物合成的整个机制,这表明其细胞壁结构可能是非典型的。然而,基因组编码 S-层同源结构域蛋白,以及 CMP-legionaminate 生物合成的机制,推断其具有 S-层糖蛋白。几乎完整的趋化作用机制与鞭毛合成和组装基因的缺失相结合,表明存在替代类型的运动。预测的严格厌氧生活方式,具有双重呼吸(亚硝酸盐氨化)和发酵能力。预测的底物包括广泛的糖和糖醇以及几种氨基酸。通过鉴定细菌微隔间基因来隔离产生的有毒中间体,证实了鼠李糖代谢的能力。比较基因组分析确定了 LCP-89 基因组与其四个姐妹门(SM32-31、AABM5-125-24 和 KSB1)之间在更广泛的 FCB () 超门内的氧敏感性、呼吸能力、底物利用偏好和发酵终产物的差异。我们的研究结果详细描述了候选门 LCP-89 的成员,并强调了协调基于 16S rRNA 的系统发育和基于基因组的系统发育的重要性。我们对尚未培养的微生物门的代谢能力、生理偏好和生态作用的理解正在迅速扩展。目前有两种方法用于描述自然界中的微生物群落:基于扩增子的 16S rRNA 基因调查用于群落特征描述,以及宏基因组学/单细胞基因组学用于详细的代谢重建。使用 16S rRNA 调查已经记录了多个尚未培养的细菌门的存在,获得这些尚未培养谱系的基因组代表对于我们理解尚未培养的生物体在自然界中的作用至关重要。本研究提供了基于基因组的分析,突出了先前在 16S rRNA 调查中确定但尚未描述基因组的尚未培养细菌门(LCP-89)的结构特征和代谢能力。我们的分析确定了该门成员的几个有趣的结构特征,例如缺乏肽聚糖生物合成机制和形成细菌微隔间的能力。预测的代谢能力包括降解广泛的糖、厌氧呼吸能力和发酵能力。除了对候选门 LCP-89 进行详细的结构和代谢分析外,这项工作还代表了通过协调基于 16S rRNA 的和基于基因组的分类学大纲来实现微生物分类学统一方案的又一步。