Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
Nature. 2013 May 16;497(7449):374-7. doi: 10.1038/nature12116.
An ambitious goal in biology is to understand the behaviour of cells during development by imaging-in vivo and with subcellular resolution-changes of the embryonic structure. Important morphogenetic movements occur throughout embryogenesis, but in particular during gastrulation when a series of dramatic, coordinated cell movements drives the reorganization of a simple ball or sheet of cells into a complex multi-layered organism. In Xenopus laevis, the South African clawed frog and also in zebrafish, cell and tissue movements have been studied in explants, in fixed embryos, in vivo using fluorescence microscopy or microscopic magnetic resonance imaging. None of these methods allows cell behaviours to be observed with micrometre-scale resolution throughout the optically opaque, living embryo over developmental time. Here we use non-invasive in vivo, time-lapse X-ray microtomography, based on single-distance phase contrast and combined with motion analysis, to examine the course of embryonic development. We demonstrate that this powerful four-dimensional imaging technique provides high-resolution views of gastrulation processes in wild-type X. laevis embryos, including vegetal endoderm rotation, archenteron formation, changes in the volumes of cavities within the porous interstitial tissue between archenteron and blastocoel, migration/confrontation of mesendoderm and closure of the blastopore. Differential flow analysis separates collective from relative cell motion to assign propulsion mechanisms. Moreover, digitally determined volume balances confirm that early archenteron inflation occurs through the uptake of external water. A transient ectodermal ridge, formed in association with the confrontation of ventral and head mesendoderm on the blastocoel roof, is identified. When combined with perturbation experiments to investigate molecular and biomechanical underpinnings of morphogenesis, our technique should help to advance our understanding of the fundamentals of development.
生物学中的一个宏伟目标是通过对胚胎结构的体内和亚细胞分辨率成像来理解细胞在发育过程中的行为。在胚胎发生过程中会发生重要的形态发生运动,但特别是在原肠胚形成过程中,一系列戏剧性的、协调的细胞运动驱动着简单的球状或片状细胞重组为复杂的多层生物体。在非洲爪蟾和斑马鱼中,细胞和组织运动已在胚胎外植体、固定胚胎、体内使用荧光显微镜或微观磁共振成像中进行了研究。这些方法都无法在整个发育时间内以亚毫米级分辨率观察到光学不透明的活体胚胎中的细胞行为。在这里,我们使用基于单距离相衬的非侵入性体内延时 X 射线微断层扫描,并结合运动分析来检查胚胎发育过程。我们证明,这种强大的四维成像技术可以提供野生型非洲爪蟾胚胎原肠胚形成过程的高分辨率视图,包括植物内胚层旋转、原肠胚形成、原肠胚和囊胚腔之间多孔间质组织内腔体积的变化、中胚层和胚孔的迁移/对峙。差异流分析将集体运动与相对细胞运动分离,以分配推进机制。此外,数字确定的体积平衡证实,早期原肠胚的膨胀是通过吸收外部水来实现的。与头和腹中胚层在囊胚腔顶的对峙相关形成的短暂外胚层嵴被识别。当与研究形态发生的分子和生物力学基础的扰动实验相结合时,我们的技术应该有助于推进我们对发育基础的理解。