Department of Biological Science and Technology, National Chiao Tung University, 300, Hsin-Chu, Taiwan, Republic of China.
Org Biomol Chem. 2013 Jul 7;11(25):4214-9. doi: 10.1039/c3ob40493e.
A computational modeling/protein engineering approach was applied to probe H234, C457, T509, Y510, and W587 within Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase (ERG7), which spatially affects the C-10 cation of lanosterol formation. Substitution of Trp587 to aromatic residues supported the "aromatic hypothesis" that the π-electron-rich pocket is important for the stabilization of electron-deficient cationic intermediates. The Cys457 to Gly and Thr509 to Gly mutations disrupted the pre-existing H-bond to the protonating Asp456 and the intrinsic His234 : Tyr510 H-bond network, respectively, and generated achilleol A as the major product. An H234W/Y510W double mutation altered the ERG7 function to achilleol A synthase activity and generated achilleol A as the sole product. These results support the concept that a few-ring triterpene synthase can be derived from polycyclic cyclases by reverse evolution, and exemplify the power of computational modeling coupled with protein engineering both to study the enzyme's structure-function-mechanism relationships and to evolve new enzymatic activity.
应用计算建模/蛋白质工程方法研究了酿酒酵母角鲨烯-羊毛甾醇环化酶(ERG7)中 H234、C457、T509、Y510 和 W587 残基,这些残基空间上影响羊毛甾醇形成的 C-10 阳离子。色氨酸 587 残基取代芳香族残基支持了“芳香族假说”,即富含π电子的口袋对于稳定缺电子的阳离子中间体很重要。半胱氨酸 457 突变为甘氨酸和苏氨酸 509 突变为甘氨酸分别破坏了与质子化天冬氨酸 456 的预先存在的氢键以及固有组氨酸 234 与酪氨酸 510 的氢键网络,从而生成主要产物 Achilleol A。H234W/Y510W 双突变改变了 ERG7 的功能,成为 Achilleol A 合酶活性,并生成 Achilleol A 作为唯一产物。这些结果支持了这样的概念,即通过反向进化,少数环三萜烯合酶可以从多环环化酶中衍生而来,并例证了计算建模与蛋白质工程相结合的强大功能,既可以研究酶的结构-功能-机制关系,又可以进化新的酶活性。