Suppr超能文献

抓住无形的:抽象词的语义处理。

Grasping the invisible: semantic processing of abstract words.

机构信息

University of Calgary, Calgary, Alberta, Canada.

出版信息

Psychon Bull Rev. 2013 Dec;20(6):1312-8. doi: 10.3758/s13423-013-0452-x.

Abstract

The problem of how abstract word meanings are represented has been a challenging one. In the present study, we extended the semantic richness approach (e.g., Yap, Tan, Pexman, & Hargreaves in Psychonomic Bulletin & Review 18:742-750, 2011) to abstract words, examining the effects of six semantic richness variables on lexical-semantic processing for 207 abstract nouns. The candidate richness dimensions were context availability (CA), sensory experience rating (SER), valence, arousal, semantic neighborhood (SN), and number of associates (NoA). The behavioral tasks were lexical decision (LDT) and semantic categorization (SCT). Our results showed that the semantic richness variables were significantly related to both LDT and SCT latencies, even after lexical and orthographic factors were controlled. The patterns of richness effects varied across tasks, with CA effects in the LDT, and SER and valence effects in the SCT. These results provide new insight into how abstract meanings may be grounded, and are consistent with a dynamic, multidimensional framework for semantic processing.

摘要

抽象词汇意义的表示问题一直是一个具有挑战性的问题。在本研究中,我们将语义丰富度方法(例如,Yap、Tan、Pexman 和 Hargreaves 在《心理学期刊与评论》18:742-750,2011 年)扩展到抽象词汇,研究了六个语义丰富度变量对 207 个抽象名词的词汇语义加工的影响。候选丰富度维度包括语境可用性(CA)、感觉体验评分(SER)、情感价、唤醒度、语义近邻(SN)和联想数(NoA)。行为任务包括词汇判断(LDT)和语义分类(SCT)。我们的结果表明,即使在控制了词汇和正字法因素之后,语义丰富度变量与 LDT 和 SCT 潜伏期显著相关。丰富度效应的模式在任务之间有所不同,在 LDT 中有 CA 效应,在 SCT 中有 SER 和情感价效应。这些结果为抽象意义如何被具体化提供了新的见解,并且与语义处理的动态、多维框架一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验