Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA.
ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4799-807. doi: 10.1021/am4003777. Epub 2013 May 31.
Blends of poly(3-hexylthiophene) (P3HT) and C61-butyric acid methyl ester (PCBM) are widely used as a model system for bulk heterojunction active layers developed for solution-processable, flexible solar cells. In this work, vertical concentration profiles within the P3HT:PCBM active layer are predicted based on a thermodynamic analysis of the constituent materials and typical solvents. Surface energies of the active layer components and a common transport interlayer blend, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), are first extracted using contact angle measurements coupled with the acid-base model. From this data, intra- and interspecies interaction free energies are calculated, which reveal that the thermodynamically favored arrangement consists of a uniformly blended "bulk" structure capped with a P3HT-rich air interface and a slightly PCBM-rich buried interface. Although the "bulk" composition is solely determined by P3HT:PCBM ratio, composition near the buried interface is dependent on both the blend ratio and interaction free energy difference between solvated P3HT and PCBM deposition onto PEDOT:PSS. In contrast, the P3HT-rich overlayer is independent of processing conditions, allowing kinetic formation of a PCBM-rich sublayer during film casting due to limitations in long-range species diffusion. These thermodynamic calculations are experimentally validated by angle-resolved X-ray photoelectron spectroscopy (XPS) and low energy XPS depth profiling, which show that the actual composition profiles of the cast and annealed films closely match the predicted behavior. These experimentally derived profiles provide clear evidence that typical bulk heterojunction active layers are predominantly characterized by thermodynamically stable composition profiles. Furthermore, the predictive capabilities of the comprehensive free energy approach are demonstrated, which will enable investigation of structurally integrated devices and novel active layer systems including low band gap polymers, ternary systems, and small molecule blends.
聚(3-己基噻吩)(P3HT)和 C61-丁酸甲酯(PCBM)的混合物广泛用作用于溶液处理的柔性太阳能电池的体异质结活性层的模型体系。在这项工作中,基于对组成材料和典型溶剂的热力学分析,预测了 P3HT:PCBM 活性层内的垂直浓度分布。首先通过接触角测量和酸碱模型结合来提取活性层成分和常见传输夹层混合物聚(3,4-亚乙基二氧噻吩)聚(苯乙烯磺酸盐)(PEDOT:PSS)的表面能。从这些数据中,计算了同种和异种相互作用自由能,结果表明,热力学上有利的排列是由均匀混合的“体”结构组成,顶部是富含 P3HT 的空气界面,底部是稍微富含 PCBM 的掩埋界面。尽管“体”组成仅由 P3HT:PCBM 比决定,但靠近掩埋界面的组成取决于共混比以及 P3HT 和 PCBM 在 PEDOT:PSS 上的溶剂化沉积之间的自由能差。相比之下,富含 P3HT 的覆盖层与处理条件无关,允许在薄膜铸造过程中由于长程物种扩散的限制,形成富含 PCBM 的亚层。这些热力学计算通过角分辨 X 射线光电子能谱(XPS)和低能 XPS 深度剖析得到实验验证,结果表明,浇铸和退火薄膜的实际组成分布与预测行为非常吻合。这些实验得出的分布曲线清楚地表明,典型的体异质结活性层主要由热力学稳定的组成分布特征。此外,还展示了综合自由能方法的预测能力,这将能够研究结构集成器件和新型活性层系统,包括低带隙聚合物、三元体系和小分子共混物。