Alghunaim Abdullah, Brink Eric T, Newby Bi-Min Zhang
Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325-3906, United States.
Polymer (Guildf). 2016 Sep 28;101:139-150. doi: 10.1016/j.polymer.2016.08.059.
In a previous study, we demonstrated the feasibility of retaining poly(N-isopropylacrylamide) (pNIPAAm) on hydroxylated surfaces by spin-coating a blend of pNIPAAm with a small amount of 3-aminopropyltriethoxysilane (APTES), an organosilane, followed by thermal annealing. In this study, we detail the conditions for retaining pNIPAAm films by APTES. Our results show that the difference in surface energy between pNIPAAm and APTES in the blended film resulted in the segregation of APTES molecules to the film/substrate interface, as verified by XPS, during annealing, and the segregated APTES molecules cross-linked to form the APTES network, thus entrapping pNIPAAm. The retained pNIPAAm films (25-35 nm) exhibited thermo-responsive behavior, determined by water contact angles and film thickness in water at temperatures above and below the lower critical solution temperature of pNIPAAm, as well as good cell attachment and rapid detachment (<10 minutes). The gained insights would allow a better design of these thermo-responsive surfaces for cell sheet engineering and other relevant applications.
在之前的一项研究中,我们通过旋涂聚(N-异丙基丙烯酰胺)(pNIPAAm)与少量3-氨丙基三乙氧基硅烷(APTES,一种有机硅烷)的混合物,随后进行热退火,证明了在羟基化表面保留pNIPAAm的可行性。在本研究中,我们详细阐述了通过APTES保留pNIPAAm薄膜的条件。我们的结果表明,混合薄膜中pNIPAAm与APTES之间的表面能差异导致APTES分子在退火过程中偏析到薄膜/基底界面,这一点通过X射线光电子能谱(XPS)得到了验证,并且偏析的APTES分子交联形成APTES网络,从而捕获pNIPAAm。保留的pNIPAAm薄膜(25 - 35纳米)表现出热响应行为,这通过在高于和低于pNIPAAm的低临界溶液温度的水中的水接触角和薄膜厚度来确定,同时还具有良好的细胞附着性和快速 detachment(<10分钟)。所获得的见解将有助于更好地设计这些用于细胞片工程和其他相关应用的热响应表面。