Suppr超能文献

半视野扇形分析在多焦视觉诱发电位客观视野检查中对青光眼性视野缺损早期检测的作用。

The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects.

作者信息

Mousa Mohammad F, Cubbidge Robert P, Al-Mansouri Fatima, Bener Abdulbari

机构信息

Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar.

出版信息

Clin Ophthalmol. 2013;7:843-58. doi: 10.2147/OPTH.S44009. Epub 2013 May 8.

Abstract

OBJECTIVE

The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique.

METHODS AND PATIENTS

Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol.

RESULTS

Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P < 0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P < 0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P < 0.01), and only 1/11 pair was statistically significant (t-test P < 0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis.

CONCLUSION

The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test.

摘要

目的

本研究旨在检验一种新的mfVEP客观视野分析方法在青光眼视野缺损早期检测中的有效性,并与金标准技术进行比较。

方法与患者

本研究对三组进行了测试;正常对照组(38只眼)、青光眼患者组(36只眼)和青光眼可疑患者组(38只眼)。所有受试者均接受了两项标准的24-2视野测试:一项使用Humphrey视野分析仪,另一项在同一时段进行单次mfVEP测试。使用新的分析方案:半视野扇形分析方案对mfVEP结果进行分析。

结果

mfVEP分析显示,三组之间上、下半视野的信噪比(SNR)差异具有统计学意义(方差分析,P<0.001,95%置信区间,正常组为2.82,2.89;青光眼可疑组为2.25,2.29;青光眼组为1.67,1.73)。青光眼患者组11/11对扇形区和半环区的上、下半视野扇形区和半环区之间的差异具有统计学意义(t检验P<0.001),青光眼可疑组5/11对扇形区和半环区具有统计学意义(t检验P<0.01),只有1/11对具有统计学意义(t检验P<0.9)。半视野扇形分析方案检测青光眼的敏感性和特异性分别为97%和86%,在青光眼可疑患者中分别为89%和79%。这些结果表明,新的分析方案能够确认标准视野检查检测到的现有视野缺损,能够区分三个研究组,正常患者和疑似青光眼患者之间有明显区别,并且能够检测到标准视野检查未检测到的早期视野变化。此外,使用该分析方法,正常人与青光眼患者之间的区别尤其明显且具有统计学意义。

结论

mfVEP测试中使用的新的半视野扇形分析方案可用于检测青光眼和青光眼可疑患者的青光眼视野缺损。使用该方案,可以提供有关水平中线两侧局部视野差异的信息,可用于区分青光眼和正常受试者。mfVEP测试的敏感性和特异性显示出非常有前景的结果,并与青光眼视野缺损的其他解剖学变化相关。扇形区分析方案可以检测到标准Humphrey视野分析仪测试未检测到的早期视野变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验