Suppr超能文献

基于改进U-Net生成对抗网络的视网膜血管端到端自动分类

End-to-End Automatic Classification of Retinal Vessel Based on Generative Adversarial Networks with Improved U-Net.

作者信息

Zhang Jieni, Yang Kun, Shen Zhufu, Sang Shengbo, Yuan Zhongyun, Hao Runfang, Zhang Qi, Cai Meiling

机构信息

Shanxi Key Laboratory of Micro Nano Sensor & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.

Shanxi Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China.

出版信息

Diagnostics (Basel). 2023 Mar 17;13(6):1148. doi: 10.3390/diagnostics13061148.

Abstract

The retinal vessels in the human body are the only ones that can be observed directly by non-invasive imaging techniques. Retinal vessel morphology and structure are the important objects of concern for physicians in the early diagnosis and treatment of related diseases. The classification of retinal vessels has important guiding significance in the basic stage of diagnostic treatment. This paper proposes a novel method based on generative adversarial networks with improved U-Net, which can achieve synchronous automatic segmentation and classification of blood vessels by an end-to-end network. The proposed method avoids the dependency of the segmentation results in the multiple classification tasks. Moreover, the proposed method builds on an accurate classification of arteries and veins while also classifying arteriovenous crossings. The validity of the proposed method is evaluated on the RITE dataset: the accuracy of image comprehensive classification reaches 96.87%. The sensitivity and specificity of arteriovenous classification reach 91.78% and 97.25%. The results verify the effectiveness of the proposed method and show the competitive classification performance.

摘要

人体视网膜血管是唯一能够通过非侵入性成像技术直接观察到的血管。视网膜血管的形态和结构是医生在相关疾病早期诊断和治疗中关注的重要对象。视网膜血管分类在诊断治疗的基础阶段具有重要的指导意义。本文提出了一种基于改进U-Net生成对抗网络的新方法,该方法可以通过端到端网络实现血管的同步自动分割和分类。所提方法避免了在多分类任务中分割结果的依赖性。此外,该方法在对动脉和静脉进行准确分类的基础上,还对动静脉交叉处进行了分类。在RITE数据集上评估了所提方法的有效性:图像综合分类准确率达到96.87%。动静脉分类的灵敏度和特异性分别达到91.78%和97.25%。结果验证了所提方法的有效性,并显示出具有竞争力的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d3d/10047448/c7e015539d5b/diagnostics-13-01148-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验