Abtahi Mansour, Le David, Lim Jennifer I, Yao Xincheng
Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
These authors contributed equally to this work.
Biomed Opt Express. 2022 Aug 22;13(9):4870-4888. doi: 10.1364/BOE.468483. eCollection 2022 Sep 1.
This study is to demonstrate the effect of multimodal fusion on the performance of deep learning artery-vein (AV) segmentation in optical coherence tomography (OCT) and OCT angiography (OCTA); and to explore OCT/OCTA characteristics used in the deep learning AV segmentation. We quantitatively evaluated multimodal architectures with early and late OCT-OCTA fusions, compared to the unimodal architectures with OCT-only and OCTA-only inputs. The OCTA-only architecture, early OCT-OCTA fusion architecture, and late OCT-OCTA fusion architecture yielded competitive performances. For the 6 mm×6 mm and 3 mm×3 mm datasets, the late fusion architecture achieved an overall accuracy of 96.02% and 94.00%, slightly better than the OCTA-only architecture which achieved an overall accuracy of 95.76% and 93.79%. 6 mm×6 mm OCTA images show AV information at pre-capillary level structure, while 3 mm×3 mm OCTA images reveal AV information at capillary level detail. In order to interpret the deep learning performance, saliency maps were produced to identify OCT/OCTA image characteristics for AV segmentation. Comparative OCT and OCTA saliency maps support the capillary-free zone as one of the possible features for AV segmentation in OCTA. The deep learning network MF-AV-Net used in this study is available on GitHub for open access.
本研究旨在证明多模态融合对光学相干断层扫描(OCT)和OCT血管造影(OCTA)中深度学习动静脉(AV)分割性能的影响;并探索用于深度学习AV分割的OCT/OCTA特征。我们定量评估了早期和晚期OCT - OCTA融合的多模态架构,并与仅使用OCT和仅使用OCTA输入的单模态架构进行了比较。仅使用OCTA的架构、早期OCT - OCTA融合架构和晚期OCT - OCTA融合架构均产生了具有竞争力的性能。对于6mm×6mm和3mm×3mm的数据集,晚期融合架构的总体准确率分别达到96.02%和94.00%,略优于仅使用OCTA的架构,后者的总体准确率分别为95.76%和93.79%。6mm×6mm的OCTA图像显示了毛细血管前水平结构的动静脉信息,而3mm×3mm的OCTA图像揭示了毛细血管水平细节的动静脉信息。为了解释深度学习性能,生成了显著性图以识别用于AV分割的OCT/OCTA图像特征。对比的OCT和OCTA显著性图支持无毛细血管区作为OCTA中AV分割的可能特征之一。本研究中使用的深度学习网络MF - AV - Net可在GitHub上获取以供开放访问。