Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
Brain Connect. 2013;3(4):339-52. doi: 10.1089/brain.2013.0156. Epub 2013 Jul 31.
Brain function in "resting" state has been extensively studied with functional magnetic resonance imaging (FMRI). However, drawing valid inferences, particularly for group comparisons, is fraught with pitfalls. Differing levels of brain-wide correlations can confound group comparisons. Global signal regression (GSReg) attempts to reduce this confound and is commonly used, even though it differentially biases correlations over brain regions, potentially leading to false group differences. We propose to use average brain-wide correlations as a measure of global correlation (GCOR), and examine the circumstances under which it can be used to identify or correct for differences in global fluctuations. In the process, we show the bias induced by GSReg to be a function only of the data's covariance matrix, and use simulations to compare corrections with GCOR as covariate to GSReg under various scenarios. We find that unlike GSReg, GCOR is a conservative approach that can reduce global variations, while avoiding the introduction of false significant differences, as GSReg can. However, as with GSReg, one cannot escape the interaction effect between the grouping variable and GCOR covariate on effect size. While GCOR is a complementary measure for resting state-FMRI applicable to legacy data, it is a lesser substitute for proper level-I denoising. We also assess the applicability of GCOR to empirical data with motion-based subject grouping and compare group differences to those using GSReg. We find that, while GCOR reduced correlation differences between high and low movers, it is doubtful that motion was the sole driver behind the differences in the first place.
大脑在“休息”状态下的功能已经被广泛研究,采用的方法是功能性磁共振成像(FMRI)。然而,要得出有效的推论,尤其是用于组间比较,存在很多问题。大脑整体相关性的差异会混淆组间比较。全局信号回归(GSReg)试图减少这种混淆,并且经常被使用,尽管它会在大脑区域之间产生不同的相关性偏差,从而导致虚假的组间差异。我们建议使用平均全脑相关性作为全局相关性(GCOR)的度量,并研究在何种情况下可以使用它来识别或纠正全局波动的差异。在这个过程中,我们表明 GSReg 引起的偏差仅取决于数据的协方差矩阵,并使用模拟来比较在各种情况下,作为协变量的 GCOR 校正与 GSReg 校正的差异。我们发现,与 GSReg 不同,GCOR 是一种保守的方法,可以减少全局变化,同时避免引入 GSReg 可能引入的虚假显著差异。然而,与 GSReg 一样,人们无法逃避分组变量和 GCOR 协变量对效应大小的相互作用。虽然 GCOR 是适用于遗留数据的静息态 fMRI 的补充度量,但它不如适当的一级去噪方法。我们还评估了 GCOR 对基于运动的主体分组的经验数据的适用性,并将组间差异与使用 GSReg 的差异进行比较。我们发现,虽然 GCOR 减少了高运动者和低运动者之间的相关性差异,但运动是否是导致差异的唯一因素值得怀疑。