Suppr超能文献

自发脑活动的时间独立功能模式。

Temporally-independent functional modes of spontaneous brain activity.

机构信息

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford OX3 9DU, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6. doi: 10.1073/pnas.1121329109. Epub 2012 Feb 7.

Abstract

Resting-state functional magnetic resonance imaging has become a powerful tool for the study of functional networks in the brain. Even "at rest," the brain's different functional networks spontaneously fluctuate in their activity level; each network's spatial extent can therefore be mapped by finding temporal correlations between its different subregions. Current correlation-based approaches measure the average functional connectivity between regions, but this average is less meaningful for regions that are part of multiple networks; one ideally wants a network model that explicitly allows overlap, for example, allowing a region's activity pattern to reflect one network's activity some of the time, and another network's activity at other times. However, even those approaches that do allow overlap have often maximized mutual spatial independence, which may be suboptimal if distinct networks have significant overlap. In this work, we identify functionally distinct networks by virtue of their temporal independence, taking advantage of the additional temporal richness available via improvements in functional magnetic resonance imaging sampling rate. We identify multiple "temporal functional modes," including several that subdivide the default-mode network (and the regions anticorrelated with it) into several functionally distinct, spatially overlapping, networks, each with its own pattern of correlations and anticorrelations. These functionally distinct modes of spontaneous brain activity are, in general, quite different from resting-state networks previously reported, and may have greater biological interpretability.

摘要

静息态功能磁共振成像已成为研究大脑功能网络的有力工具。即使在“静息”状态下,大脑的不同功能网络也会在其活动水平上自发波动;因此,可以通过找到不同子区域之间的时间相关性来绘制每个网络的空间范围。目前基于相关的方法测量区域之间的平均功能连接,但对于属于多个网络的区域,这种平均值意义不大;理想情况下,人们希望有一种网络模型能够明确允许重叠,例如,允许一个区域的活动模式在某些时候反映一个网络的活动,而在其他时候反映另一个网络的活动。然而,即使是那些允许重叠的方法,也常常最大限度地提高了空间独立性,如果不同的网络有显著的重叠,这可能不是最优的。在这项工作中,我们利用功能磁共振成像采样率提高带来的额外时间丰富性,通过时间独立性来识别功能不同的网络。我们确定了多个“时间功能模式”,包括将默认模式网络(以及与之反相关的区域)细分为几个功能不同、空间重叠的网络的几个模式,每个模式都有其自身的相关性和反相关性模式。这些自发脑活动的功能不同模式通常与以前报道的静息状态网络有很大不同,并且可能具有更大的生物学可解释性。

相似文献

1
Temporally-independent functional modes of spontaneous brain activity.自发脑活动的时间独立功能模式。
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6. doi: 10.1073/pnas.1121329109. Epub 2012 Feb 7.
6
The maturing architecture of the brain's default network.大脑默认网络的成熟架构。
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4028-32. doi: 10.1073/pnas.0800376105. Epub 2008 Mar 5.

引用本文的文献

3
parcellation of the human spinal cord functional architecture.人类脊髓功能结构的分区
Imaging Neurosci (Camb). 2024 Jan 11;2. doi: 10.1162/imag_a_00059. eCollection 2024.

本文引用的文献

5
Precuneus shares intrinsic functional architecture in humans and monkeys.楔前叶在人类和猴子中具有内在的功能结构。
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20069-74. doi: 10.1073/pnas.0905314106. Epub 2009 Nov 10.
8
Bayesian analysis of neuroimaging data in FSL.基于FSL的神经影像数据的贝叶斯分析。
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验