Suppr超能文献

用谱系特异性蛋白诱导小鼠体细胞多能性。

Induction of pluripotency in mouse somatic cells with lineage specifiers.

机构信息

MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China.

出版信息

Cell. 2013 May 23;153(5):963-75. doi: 10.1016/j.cell.2013.05.001.

Abstract

The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.

摘要

重编程因子主要是从富含胚胎干细胞(ESC)和多能性相关因子的胚胎干细胞中鉴定出来的。在这里,我们报告说,在小鼠体细胞重编程过程中,可以使用谱系特异性标志物诱导多能性,这些标志物是与 ESC 身份竞争的多能性,其中大多数在 ESC 中并不丰富。我们发现,多能性的核心调控因子 OCT4 和 SOX2 可以分别被参与中胚层(ME)和外胚层(ECT)特化的谱系特异性标志物所取代。OCT4 和它的替代物降低了一组 ECT 基因的表达水平,而 SOX2 和它的替代物在重编程过程中抑制了一组 ME 基因。令人惊讶的是,这两种相互拮抗的谱系特异性标志物可以在缺乏 OCT4 和 SOX2 的情况下协同诱导多能性。我们的研究提出了一个“跷跷板模型”,即在使用多能性因子和/或拮抗谱系特异性标志物建立平衡的情况下,可以促进重编程。

相似文献

1
Induction of pluripotency in mouse somatic cells with lineage specifiers.
Cell. 2013 May 23;153(5):963-75. doi: 10.1016/j.cell.2013.05.001.
2
Reprogramming of human fibroblasts to pluripotency with lineage specifiers.
Cell Stem Cell. 2013 Sep 5;13(3):341-50. doi: 10.1016/j.stem.2013.06.019. Epub 2013 Jul 18.
3
Lineage specifiers: new players in the induction of pluripotency.
Genomics Proteomics Bioinformatics. 2013 Oct;11(5):259-63. doi: 10.1016/j.gpb.2013.09.005. Epub 2013 Oct 4.
4
GATA family members as inducers for cellular reprogramming to pluripotency.
Cell Res. 2015 Feb;25(2):169-80. doi: 10.1038/cr.2015.6. Epub 2015 Jan 16.
5
Disruption of OCT4 Ubiquitination Increases OCT4 Protein Stability and ASH2L-B-Mediated H3K4 Methylation Promoting Pluripotency Acquisition.
Stem Cell Reports. 2018 Oct 9;11(4):973-987. doi: 10.1016/j.stemcr.2018.09.001. Epub 2018 Sep 27.
6
And then there were none: no need for pluripotency factors to induce reprogramming.
Cell Stem Cell. 2013 Sep 5;13(3):261-2. doi: 10.1016/j.stem.2013.08.004.
7
NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction.
Nat Cell Biol. 2018 Aug;20(8):900-908. doi: 10.1038/s41556-018-0136-x. Epub 2018 Jul 16.
8
Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.
Biochem Biophys Res Commun. 2013 Feb 15;431(3):444-9. doi: 10.1016/j.bbrc.2012.12.149. Epub 2013 Jan 16.
9
New balance in pluripotency: reprogramming with lineage specifiers.
Cell. 2013 May 23;153(5):939-40. doi: 10.1016/j.cell.2013.04.051.
10
Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency.
Exp Mol Med. 2017 Nov 24;49(11):e401. doi: 10.1038/emm.2017.191.

引用本文的文献

1
Molecular basis of cell fate plasticity - insights from the privileged cells.
Curr Opin Genet Dev. 2025 Aug;93:102354. doi: 10.1016/j.gde.2025.102354. Epub 2025 May 5.
2
The self-renewal function of Oct-4 can be replaced by the EWS-Oct-4 fusion protein in embryonic stem cells.
Cell Mol Life Sci. 2025 Apr 18;82(1):166. doi: 10.1007/s00018-025-05701-0.
3
The regulatory architecture of the primed pluripotent cell state.
Nat Commun. 2025 Apr 9;16(1):3351. doi: 10.1038/s41467-025-57894-4.
4
DelaySSA: stochastic simulation of biochemical systems and gene regulatory networks with or without time delays.
PLoS Comput Biol. 2025 Apr 8;21(4):e1012919. doi: 10.1371/journal.pcbi.1012919. eCollection 2025 Apr.
5
An acidic residue within the OCT4 dimerization interface of SOX17 is necessary and sufficient to overcome its pluripotency-inducing activity.
Stem Cell Reports. 2025 Mar 11;20(3):102398. doi: 10.1016/j.stemcr.2025.102398. Epub 2025 Feb 6.
6
Reconstitution of pluripotency from mouse fibroblast through Sall4 overexpression.
Nat Commun. 2024 Dec 30;15(1):10787. doi: 10.1038/s41467-024-54924-5.
7
Activation-derepression synergy enables a bHLH network to coordinate a signal-specific fate response.
Cell Rep. 2024 Dec 24;43(12):115077. doi: 10.1016/j.celrep.2024.115077. Epub 2024 Dec 12.
8
Manipulating cell fate through reprogramming: approaches and applications.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.203090. Epub 2024 Sep 30.
9
CHIR99021 and Brdu Are Critical in Chicken iPSC Reprogramming via Small-Molecule Screening.
Genes (Basel). 2024 Sep 13;15(9):1206. doi: 10.3390/genes15091206.
10
Enhanced cellular longevity arising from environmental fluctuations.
Cell Syst. 2024 Aug 21;15(8):738-752.e5. doi: 10.1016/j.cels.2024.07.007.

本文引用的文献

1
A molecular roadmap of reprogramming somatic cells into iPS cells.
Cell. 2012 Dec 21;151(7):1617-32. doi: 10.1016/j.cell.2012.11.039.
2
Klf4 is required for germ-layer differentiation and body axis patterning during Xenopus embryogenesis.
Development. 2012 Nov;139(21):3950-61. doi: 10.1242/dev.082024. Epub 2012 Sep 19.
4
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
Nature. 2012 Aug 30;488(7413):652-5. doi: 10.1038/nature11333.
5
Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor.
Cell Stem Cell. 2012 Jul 6;11(1):100-9. doi: 10.1016/j.stem.2012.05.018. Epub 2012 Jun 7.
6
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells.
Cell Stem Cell. 2012 Apr 6;10(4):440-54. doi: 10.1016/j.stem.2012.02.016.
7
Direct conversion of fibroblasts into stably expandable neural stem cells.
Cell Stem Cell. 2012 Apr 6;10(4):473-9. doi: 10.1016/j.stem.2012.03.003. Epub 2012 Mar 22.
8
Direct reprogramming of fibroblasts into neural stem cells by defined factors.
Cell Stem Cell. 2012 Apr 6;10(4):465-72. doi: 10.1016/j.stem.2012.02.021. Epub 2012 Mar 22.
9
Direct lineage conversions: unnatural but useful?
Nat Biotechnol. 2011 Oct;29(10):892-907. doi: 10.1038/nbt.1946.
10
Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.
Cell. 2011 Jun 10;145(6):875-89. doi: 10.1016/j.cell.2011.05.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验