Suppr超能文献

高效的基于矩的混合参数推断和基因流来源。

Efficient moment-based inference of admixture parameters and sources of gene flow.

机构信息

Department of Mathematics and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

出版信息

Mol Biol Evol. 2013 Aug;30(8):1788-802. doi: 10.1093/molbev/mst099. Epub 2013 May 24.

Abstract

The recent explosion in available genetic data has led to significant advances in understanding the demographic histories of and relationships among human populations. It is still a challenge, however, to infer reliable parameter values for complicated models involving many populations. Here, we present MixMapper, an efficient, interactive method for constructing phylogenetic trees including admixture events using single nucleotide polymorphism (SNP) genotype data. MixMapper implements a novel two-phase approach to admixture inference using moment statistics, first building an unadmixed scaffold tree and then adding admixed populations by solving systems of equations that express allele frequency divergences in terms of mixture parameters. Importantly, all features of the model, including topology, sources of gene flow, branch lengths, and mixture proportions, are optimized automatically from the data and include estimates of statistical uncertainty. MixMapper also uses a new method to express branch lengths in easily interpretable drift units. We apply MixMapper to recently published data for Human Genome Diversity Cell Line Panel individuals genotyped on a SNP array designed especially for use in population genetics studies, obtaining confident results for 30 populations, 20 of them admixed. Notably, we confirm a signal of ancient admixture in European populations-including previously undetected admixture in Sardinians and Basques-involving a proportion of 20-40% ancient northern Eurasian ancestry.

摘要

最近可用遗传数据的爆炸式增长导致了人类群体的人口历史和关系的理解取得了重大进展。然而,对于涉及多个群体的复杂模型来说,推断可靠的参数值仍然是一个挑战。在这里,我们提出了 MixMapper,这是一种使用单核苷酸多态性 (SNP) 基因型数据构建包括混合事件的系统发育树的高效、交互式方法。MixMapper 使用矩统计数据实施了一种新颖的两阶段混合推断方法,首先构建未混合的支架树,然后通过求解以混合参数表示等位基因频率分歧的方程组来添加混合群体。重要的是,模型的所有特征,包括拓扑结构、基因流动的来源、分支长度和混合比例,都从数据中自动优化,并包括统计不确定性的估计。MixMapper 还使用一种新方法以易于解释的漂移单位表示分支长度。我们将 MixMapper 应用于最近发表的人类基因组多样性细胞系面板个体的 SNP 数组数据,该数据是专门为群体遗传学研究设计的,对 30 个群体进行了可靠的分析,其中 20 个是混合群体。值得注意的是,我们在欧洲群体中确认了一个古老混合的信号,包括以前在撒丁人和巴斯克人中未检测到的混合,涉及 20-40%的古老北欧亚祖先的比例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19c3/3708505/0caaf9e0986e/mst099f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验