Suppr超能文献

多状态模型中的k样本问题及转移概率矩阵检验

The k-sample problem in a multi-state model and testing transition probability matrices.

作者信息

Tattar Prabhanjan N, Vaman H J

机构信息

Dell International Services, 121, 122A, 131A, Divyasree Greens Koramangala Inner Ring Road, Challaghatta, Varthur Hobli, Bangalore, 560071, Karnataka, India,

出版信息

Lifetime Data Anal. 2014 Jul;20(3):387-403. doi: 10.1007/s10985-013-9267-3. Epub 2013 May 31.

Abstract

The choice of multi-state models is natural in analysis of survival data, e.g., when the subjects in a study pass through different states like 'healthy', 'in a state of remission', 'relapse' or 'dead' in a health related quality of life study. Competing risks is another common instance of the use of multi-state models. Statistical inference for such event history data can be carried out by assuming a stochastic process model. Under such a setting, comparison of the event history data generated by two different treatments calls for testing equality of the corresponding transition probability matrices. The present paper proposes solution to this class of problems by assuming a non-homogeneous Markov process to describe the transitions among the health states. A class of test statistics are derived for comparison of [Formula: see text] treatments by using a 'weight process'. This class, in particular, yields generalisations of the log-rank, Gehan, Peto-Peto and Harrington-Fleming tests. For an intrinsic comparison of the treatments, the 'leave-one-out' jackknife method is employed for identifying influential observations. The proposed methods are then used to develop the Kolmogorov-Smirnov type supremum tests corresponding to the various extended tests. To demonstrate the usefulness of the test procedures developed, a simulation study was carried out and an application to the Trial V data provided by International Breast Cancer Study Group is discussed.

摘要

在生存数据分析中,选择多状态模型是很自然的,例如,在一项与健康相关的生活质量研究中,研究对象会经历不同的状态,如“健康”、“缓解状态”、“复发”或“死亡”。竞争风险是使用多状态模型的另一个常见例子。对于此类事件历史数据的统计推断可以通过假设一个随机过程模型来进行。在这种情况下,比较两种不同治疗产生的事件历史数据需要检验相应转移概率矩阵的相等性。本文通过假设一个非齐次马尔可夫过程来描述健康状态之间的转移,提出了这类问题的解决方案。通过使用“权重过程”,推导了一类用于比较[公式:见正文]种治疗方法的检验统计量。这类统计量特别给出了对数秩检验、Gehan检验、Peto - Peto检验和Harrington - Fleming检验的推广。为了对治疗方法进行内在比较,采用“留一法”交叉验证法来识别有影响的观测值。然后,所提出的方法被用于开发与各种扩展检验相对应的柯尔莫哥洛夫 - 斯米尔诺夫型极大值检验。为了证明所开发的检验程序的有用性,进行了一项模拟研究,并讨论了对国际乳腺癌研究组提供的试验V数据的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验