International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
Sci Rep. 2013;3:1925. doi: 10.1038/srep01925.
London dispersion force is ubiquitous in nature, and is increasingly recognized to be an important factor in a variety of surface processes. Here we demonstrate unambiguously the decisive role of London dispersion force in non-equilibrium growth of ordered nanostructures on metal substrates using aromatic source molecules. Our first-principles based multi-scale modeling shows that a drastic reduction in the growth temperature, from ~1000°C to ~300°C, can be achieved in graphene growth on Cu(111) when the typical carbon source of methane is replaced by benzene or p-Terphenyl. The London dispersion force enhances their adsorption energies by about (0.5-1.8) eV, thereby preventing their easy desorption, facilitating dehydrogenation, and promoting graphene growth at much lower temperatures. These quantitative predictions are validated in our experimental tests, showing convincing demonstration of monolayer graphene growth using the p-Terphenyl source. The general trends established are also more broadly applicable in molecular synthesis of surface-based nanostructures.
伦敦色散力在自然界中无处不在,并且越来越被认为是各种表面过程中的一个重要因素。在这里,我们使用芳香族源分子,明确证明了伦敦色散力在金属基底上有序纳米结构的非平衡生长中的决定性作用。我们基于第一性原理的多尺度模型表明,当典型的甲烷碳源被苯或对三联苯取代时,在 Cu(111)上生长石墨烯时,生长温度可以从1000°C急剧降低到300°C。伦敦色散力使它们的吸附能增加约(0.5-1.8) eV,从而防止它们容易解吸,促进脱氢,并在更低的温度下促进石墨烯生长。这些定量预测在我们的实验测试中得到了验证,使用对三联苯源成功展示了单层石墨烯的生长。所建立的一般趋势在基于表面的纳米结构的分子合成中也具有更广泛的适用性。