Suppr超能文献

用于基因调控网络的深度差分进化完全并行方法。

DEEP-differential evolution entirely parallel method for gene regulatory networks.

作者信息

Kozlov Konstantin, Samsonov Alexander

机构信息

Department of Computational Biology, State Polytechnical University, St. Petersburg, 195251, Russia,

出版信息

J Supercomput. 2011 Jan 1;57(2):172-178. doi: 10.1007/s11227-010-0390-6.

Abstract

The Differential Evolution Entirely Parallel (DEEP) method is applied to the biological data fitting problem. We introduce a new migration scheme, in which the best member of the branch substitutes the oldest member of the next branch that provides a high speed of the algorithm convergence. We analyze the performance and efficiency of the developed algorithm on a test problem of finding the regulatory interactions within the network of gap genes that control the development of early Drosophila embryo. The parameters of a set of nonlinear differential equations are determined by minimizing the total error between the model behavior and experimental observations. The age of the individuum is defined by the number of iterations this individuum survived without changes. We used a ring topology for the network of computational nodes. The computer codes are available upon request.

摘要

差分进化完全并行(DEEP)方法被应用于生物数据拟合问题。我们引入了一种新的迁移方案,其中分支中的最佳成员替代下一个分支中最老的成员,这提供了较高的算法收敛速度。我们在一个寻找控制早期果蝇胚胎发育的间隙基因网络内调控相互作用的测试问题上分析了所开发算法的性能和效率。通过最小化模型行为与实验观测之间的总误差来确定一组非线性微分方程的参数。个体的年龄由该个体无变化存活的迭代次数定义。我们对计算节点网络使用了环形拓扑结构。可根据要求提供计算机代码。

相似文献

1
DEEP-differential evolution entirely parallel method for gene regulatory networks.
J Supercomput. 2011 Jan 1;57(2):172-178. doi: 10.1007/s11227-010-0390-6.
2
Deep convolutional neural network and IoT technology for healthcare.
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
3
Reverse engineering a gene network using an asynchronous parallel evolution strategy.
BMC Syst Biol. 2010 Mar 2;4:17. doi: 10.1186/1752-0509-4-17.
5
Reverse engineering genetic networks using nonlinear saturation kinetics.
Biosystems. 2019 Aug;182:30-41. doi: 10.1016/j.biosystems.2019.103977. Epub 2019 Jun 8.
6
A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.
PLoS One. 2014 Apr 9;9(4):e94258. doi: 10.1371/journal.pone.0094258. eCollection 2014.
7
Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
PLoS Comput Biol. 2013;9(5):e1003068. doi: 10.1371/journal.pcbi.1003068. Epub 2013 May 23.
8
A GPU-based algorithm for fast node label learning in large and unbalanced biomolecular networks.
BMC Bioinformatics. 2018 Oct 15;19(Suppl 10):353. doi: 10.1186/s12859-018-2301-4.
9
Pattern Discovery in Multilayer Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):741-752. doi: 10.1109/TCBB.2021.3105001. Epub 2022 Apr 1.

引用本文的文献

1
Impact of Negative Feedbacks on De Novo Pyrimidines Biosynthesis in .
Int J Mol Sci. 2023 Mar 2;24(5):4806. doi: 10.3390/ijms24054806.
2
Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors.
BMC Plant Biol. 2019 Mar 19;19(Suppl 2):94. doi: 10.1186/s12870-019-1685-2.
3
Parallel Algorithms for Inferring Gene Regulatory Networks: A Review.
Curr Genomics. 2018 Nov;19(7):603-614. doi: 10.2174/1389202919666180601081718.
4
Analysis of functional importance of binding sites in the Drosophila gap gene network model.
BMC Genomics. 2015;16 Suppl 13(Suppl 13):S7. doi: 10.1186/1471-2164-16-S13-S7. Epub 2015 Dec 16.
5
Differential Evolution approach to detect recent admixture.
BMC Genomics. 2015;16 Suppl 8(Suppl 8):S9. doi: 10.1186/1471-2164-16-S8-S9. Epub 2015 Jun 18.
6
Sequence-based model of gap gene regulatory network.
BMC Genomics. 2014;15 Suppl 12(Suppl 12):S6. doi: 10.1186/1471-2164-15-S12-S6. Epub 2014 Dec 19.
7
A new stochastic model for subgenomic hepatitis C virus replication considers drug resistant mutants.
PLoS One. 2014 Mar 18;9(3):e91502. doi: 10.1371/journal.pone.0091502. eCollection 2014.
8
Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks.
Methods. 2013 Jul 15;62(1):39-55. doi: 10.1016/j.ymeth.2013.05.013. Epub 2013 May 30.
9
Modeling of gap gene expression in Drosophila Kruppel mutants.
PLoS Comput Biol. 2012;8(8):e1002635. doi: 10.1371/journal.pcbi.1002635. Epub 2012 Aug 23.

本文引用的文献

1
FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution.
Nucleic Acids Res. 2009 Jan;37(Database issue):D560-6. doi: 10.1093/nar/gkn717. Epub 2008 Oct 25.
2
Dynamic control of positional information in the early Drosophila embryo.
Nature. 2004 Jul 15;430(6997):368-71. doi: 10.1038/nature02678.
3
Mechanism of eve stripe formation.
Mech Dev. 1995 Jan;49(1-2):133-58. doi: 10.1016/0925-4773(94)00310-j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验