Gardner Melissa K, Sprague Brian L, Pearson Chad G, Cosgrove Benjamin D, Bicek Andrew D, Bloom Kerry, Salmon E D, Odde David J
Cell Mol Bioeng. 2010 Jun;3(2):163-170. doi: 10.1007/s12195-010-0101-7. Epub 2010 Feb 6.
Digital fluorescence microscopy is commonly used to track individual proteins and their dynamics in living cells. However, extracting molecule-specific information from fluorescence images is often limited by the noise and blur intrinsic to the cell and the imaging system. Here we discuss a method called "model-convolution," which uses experimentally measured noise and blur to simulate the process of imaging fluorescent proteins whose spatial distribution cannot be resolved. We then compare model-convolution to the more standard approach of experimental deconvolution. In some circumstances, standard experimental deconvolution approaches fail to yield the correct underlying fluorophore distribution. In these situations, model-convolution removes the uncertainty associated with deconvolution and therefore allows direct statistical comparison of experimental and theoretical data. Thus, if there are structural constraints on molecular organization, the model-convolution method better utilizes information gathered via fluorescence microscopy, and naturally integrates experiment and theory.
数字荧光显微镜常用于追踪活细胞中单个蛋白质及其动态变化。然而,从荧光图像中提取分子特异性信息通常受到细胞和成像系统固有的噪声和模糊的限制。在此,我们讨论一种称为“模型卷积”的方法,该方法利用实验测量的噪声和模糊来模拟荧光蛋白成像过程,而这些荧光蛋白的空间分布无法分辨。然后,我们将模型卷积与更标准的实验去卷积方法进行比较。在某些情况下,标准的实验去卷积方法无法得出正确的潜在荧光团分布。在这些情况下,模型卷积消除了与去卷积相关的不确定性,因此允许对实验数据和理论数据进行直接统计比较。因此,如果分子组织存在结构限制,模型卷积方法能更好地利用通过荧光显微镜收集的信息,并自然地整合实验与理论。