Suppr超能文献

重塑药物研发管线的代谢途径。

Metabolically re-modeling the drug pipeline.

机构信息

School of Computer Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Curr Opin Pharmacol. 2013 Oct;13(5):778-85. doi: 10.1016/j.coph.2013.05.006. Epub 2013 May 31.

Abstract

Costs for drug development have soared, exposing a clear need for new R&D strategies. Systems biology has meanwhile emerged as an attractive vehicle for integrating omics data and other post-genomic technologies into the drug pipeline. One of the emerging areas of computational systems biology is constraint-based modeling (CBM), which uses genome-scale metabolic models (GSMMs) as platforms for integrating and interpreting diverse omics datasets. Here we review current uses of GSMMs in drug discovery, focusing on prediction of novel drug targets and promising lead compounds. We then expand our discussion to prediction of toxicity and selectivity of potential drug targets. We discuss successes as well as limitations of GSMMs in these areas. Finally, we suggest new ways in which GSMMs may contribute to drug discovery, offering our vision of how GSMMs may re-model the drug pipeline in years to come.

摘要

药物研发成本飙升,凸显出新的研发策略的明显需求。与此同时,系统生物学已成为将组学数据和其他后基因组技术整合到药物研发管道中的一种有吸引力的工具。计算系统生物学的新兴领域之一是基于约束的建模(CBM),它使用基于基因组规模的代谢模型(GSMM)作为整合和解释各种组学数据集的平台。在这里,我们回顾了 GSMM 在药物发现中的当前用途,重点介绍了新型药物靶点和有前途的先导化合物的预测。然后,我们将讨论扩展到对潜在药物靶点的毒性和选择性的预测。我们讨论了 GSMM 在这些领域的成功和局限性。最后,我们提出了 GSMM 可能有助于药物发现的新方法,展示了我们对 GSMM 如何在未来几年重塑药物研发管道的看法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验