Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, United States.
Curr Opin Neurobiol. 2013 Oct;23(5):724-31. doi: 10.1016/j.conb.2013.02.018. Epub 2013 May 31.
Daily rhythms in animal behavior, physiology and metabolism are driven by cell-autonomous clocks that are synchronized by environmental cycles, but maintain ∼24 hours rhythms even in the absence of environmental cues. These clocks keep time and control overt rhythms via interlocked transcriptional feedback loops, making it imperative to define the mechanisms that drive rhythmic transcription within these loops and on a genome-wide scale. Recent work identifies novel post-transcriptional and post-translational mechanisms that govern progression through these feedback loops to maintain a period of ∼24 hours. Likewise, new microarray and deep sequencing studies reveal interplay among clock activators, chromatin remodeling and RNA Pol II binding to set the phase of gene transcription and drive post-transcriptional regulatory systems that may greatly increase the proportion of genes that are under clock control. Despite great progress, gaps in our understanding of how feedback loop transcriptional programs maintain ∼24 hours cycles and drive overt rhythms remain.
动物行为、生理和代谢的日常节律是由细胞自主时钟驱动的,这些时钟通过环境周期同步,但即使在没有环境线索的情况下,也能维持大约 24 小时的节律。这些时钟通过互锁的转录反馈回路来计时和控制明显的节律,因此必须定义驱动这些回路和全基因组范围内的转录节律的机制。最近的工作确定了新的转录后和翻译后机制,这些机制控制着反馈回路的进展,以维持大约 24 小时的周期。同样,新的微阵列和深度测序研究揭示了时钟激活物、染色质重塑和 RNA Pol II 结合之间的相互作用,以确定基因转录的相位,并驱动可能大大增加受时钟控制的基因比例的转录后调节系统。尽管取得了很大的进展,但我们对反馈回路转录程序如何维持大约 24 小时的周期并驱动明显的节律仍存在理解上的差距。