Bhaumik Dulal K, Amatya Anup, Normand Sharon-Lise, Greenhouse Joel, Kaizar Eloise, Neelon Brian, Gibbons Robert D
Professor of Biostatistics, Division of Epidemiology and Biostatistics (MC923), University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612.
J Am Stat Assoc. 2012 Jun 1;107(498):555-567. doi: 10.1080/01621459.2012.664484.
We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease.
我们研究了基于固定效应和随机效应矩的荟萃分析方法在二元不良事件数据分析中的应用。特别关注了在常规实践中常见的罕见不良事件情况。我们研究了模型参数估计和研究间异质性。此外,我们研究了传统的平均治疗效果假设检验方法以及跨研究治疗效果异质性的检测方法。我们推导了三种新方法,即简单(未加权)平均治疗效果估计器、一种新的异质性估计器以及用于异质性的参数自举检验。然后,我们通过模拟研究了传统方法和新方法的统计特性。我们发现,一般来说,基于矩的联合治疗效果和异质性估计器存在偏差,偏差程度与所研究事件的罕见程度成正比。新方法消除了大部分但并非全部这种偏差。然后,使用一个关于稳定冠状动脉疾病治疗的示例数据集,对各种估计器和假设检验方法进行了比较和对比。