Suppr超能文献

罕见二元不良事件数据的Meta分析

Meta-Analysis of Rare Binary Adverse Event Data.

作者信息

Bhaumik Dulal K, Amatya Anup, Normand Sharon-Lise, Greenhouse Joel, Kaizar Eloise, Neelon Brian, Gibbons Robert D

机构信息

Professor of Biostatistics, Division of Epidemiology and Biostatistics (MC923), University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612.

出版信息

J Am Stat Assoc. 2012 Jun 1;107(498):555-567. doi: 10.1080/01621459.2012.664484.

Abstract

We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease.

摘要

我们研究了基于固定效应和随机效应矩的荟萃分析方法在二元不良事件数据分析中的应用。特别关注了在常规实践中常见的罕见不良事件情况。我们研究了模型参数估计和研究间异质性。此外,我们研究了传统的平均治疗效果假设检验方法以及跨研究治疗效果异质性的检测方法。我们推导了三种新方法,即简单(未加权)平均治疗效果估计器、一种新的异质性估计器以及用于异质性的参数自举检验。然后,我们通过模拟研究了传统方法和新方法的统计特性。我们发现,一般来说,基于矩的联合治疗效果和异质性估计器存在偏差,偏差程度与所研究事件的罕见程度成正比。新方法消除了大部分但并非全部这种偏差。然后,使用一个关于稳定冠状动脉疾病治疗的示例数据集,对各种估计器和假设检验方法进行了比较和对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c771/3665366/9259c962bf1d/nihms461225f1.jpg

相似文献

1
Meta-Analysis of Rare Binary Adverse Event Data.罕见二元不良事件数据的Meta分析
J Am Stat Assoc. 2012 Jun 1;107(498):555-567. doi: 10.1080/01621459.2012.664484.
6
Likelihood-Based Random-Effect Meta-Analysis of Binary Events.基于似然性的二元事件随机效应Meta分析
J Biopharm Stat. 2015;25(5):984-1004. doi: 10.1080/10543406.2014.920348. Epub 2014 Jun 11.
9

引用本文的文献

1
Meta-analysis of Censored Adverse Events.删失不良事件的荟萃分析
N Engl J Stat Data Sci. 2024 Oct;2(3):380-392. doi: 10.51387/24-nejsds62. Epub 2024 Jun 11.
7

本文引用的文献

1
Consensus Values and Weighting Factors.共识值与加权因子。
J Res Natl Bur Stand (1977). 1982 Sep-Oct;87(5):377-385. doi: 10.6028/jres.087.022.
8
Random-effects model for meta-analysis of clinical trials: an update.临床试验荟萃分析的随机效应模型:最新进展
Contemp Clin Trials. 2007 Feb;28(2):105-14. doi: 10.1016/j.cct.2006.04.004. Epub 2006 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验