Suppr超能文献

骨髓来源的免疫细胞和干细胞的成像与追踪

Imaging and tracking of bone marrow-derived immune and stem cells.

作者信息

Zhao Youbo, Bower Andrew J, Graf Benedikt W, Boppart Marni D, Boppart Stephen A

机构信息

Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Methods Mol Biol. 2013;1052:57-76. doi: 10.1007/7651_2013_28.

Abstract

Bone marrow (BM)-derived stem and immune cells play critical roles in maintaining the health, regeneration, and repair of many tissues. Given their important functions in tissue regeneration and therapy, tracking the dynamic behaviors of BM-derived cells has been a long-standing research goal of both biologists and engineers. Because of the complex cellular-level processes involved, real-time imaging technologies that have sufficient spatial and temporal resolution to visualize them are needed. In addition, in order to track cellular dynamics, special attention is needed to account for changes in the microenvironment where the cells reside, for example, tissue contraction, stretching, development, etc. In this chapter, we introduce methods for real-time imaging and longitudinal tracking of BM-derived immune and stem cells in in vivo three-dimensional (3-D) tissue environments with an integrated optical microscope. The integrated microscope combines multiple imaging functions derived from optical coherence tomography (OCT) and multiphoton microscopy (MPM), including optical coherence microscopy (OCM), microvasculature imaging, two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) microscopy. Short- and long-term tracking of the dynamic behavior of BM-derived cells involved in cutaneous wound healing and skin grafting in green fluorescent protein (GFP) BM-transplanted mice is demonstrated. Methods and algorithms for nonrigid registration of time-lapse images are introduced, which allows for long-term tracking of cell dynamics over several months.

摘要

骨髓(BM)来源的干细胞和免疫细胞在维持许多组织的健康、再生和修复中发挥着关键作用。鉴于它们在组织再生和治疗中的重要功能,追踪BM来源细胞的动态行为一直是生物学家和工程师长期以来的研究目标。由于涉及复杂的细胞水平过程,因此需要具有足够空间和时间分辨率以对其进行可视化的实时成像技术。此外,为了追踪细胞动态,需要特别关注细胞所处微环境的变化,例如组织收缩、拉伸、发育等。在本章中,我们介绍了使用集成光学显微镜在体内三维(3-D)组织环境中对BM来源的免疫细胞和干细胞进行实时成像和纵向追踪的方法。该集成显微镜结合了源自光学相干断层扫描(OCT)和多光子显微镜(MPM)的多种成像功能,包括光学相干显微镜(OCM)、微血管成像、双光子激发荧光(TPEF)和二次谐波产生(SHG)显微镜。展示了对绿色荧光蛋白(GFP)BM移植小鼠中参与皮肤伤口愈合和皮肤移植的BM来源细胞动态行为的短期和长期追踪。介绍了用于延时图像非刚性配准的方法和算法,这使得能够对细胞动态进行长达数月的长期追踪。

相似文献

1
Imaging and tracking of bone marrow-derived immune and stem cells.
Methods Mol Biol. 2013;1052:57-76. doi: 10.1007/7651_2013_28.
4
Non-invasive tracking of injected bone marrow mononuclear cells to injury and implanted biomaterials.
Acta Biomater. 2017 Apr 15;53:378-388. doi: 10.1016/j.actbio.2017.02.002. Epub 2017 Feb 3.
5
In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration.
J Biophotonics. 2014 Jan;7(1-2):96-102. doi: 10.1002/jbio.201200240. Epub 2013 Feb 8.

引用本文的文献

1
Contrast agents for photoacoustic imaging: a review of stem cell tracking.
Stem Cell Res Ther. 2021 Sep 25;12(1):511. doi: 10.1186/s13287-021-02576-3.
2
Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin.
J Innov Opt Health Sci. 2020 Mar;13(2). doi: 10.1142/s1793545820500078. Epub 2020 Jan 15.
3
Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes.
Front Cell Dev Biol. 2020 Jul 17;8:640. doi: 10.3389/fcell.2020.00640. eCollection 2020.
6
Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography.
Bioconjug Chem. 2017 Jun 21;28(6):1581-1597. doi: 10.1021/acs.bioconjchem.7b00194. Epub 2017 May 18.
7
Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments.
Stem Cell Rev Rep. 2016 Oct;12(5):553-559. doi: 10.1007/s12015-016-9670-8.
8
Functional imaging for regenerative medicine.
Stem Cell Res Ther. 2016 Apr 19;7(1):57. doi: 10.1186/s13287-016-0315-2.

本文引用的文献

1
Multimodal Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy.
IEEE J Sel Top Quantum Electron. 2012 Jun 27;18(4):1280-1286. doi: 10.1109/JSTQE.2011.2166377.
2
In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration.
J Biophotonics. 2014 Jan;7(1-2):96-102. doi: 10.1002/jbio.201200240. Epub 2013 Feb 8.
3
Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin.
J Biophotonics. 2012 May;5(5-6):437-48. doi: 10.1002/jbio.201200003. Epub 2012 Feb 27.
5
8
Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands.
Immunity. 2011 Apr 22;34(4):590-601. doi: 10.1016/j.immuni.2011.02.016. Epub 2011 Mar 31.
9
In vivo function of Langerhans cells and dermal dendritic cells.
Trends Immunol. 2010 Dec;31(12):446-51. doi: 10.1016/j.it.2010.08.006. Epub 2010 Oct 28.
10
Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo.
Blood. 2010 Jun 3;115(22):4412-20. doi: 10.1182/blood-2009-11-255935. Epub 2010 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验