Suppr超能文献

使用 SOM 和 PSO-SVM 区分阿尔茨海默病和轻度认知障碍。

Discrimination between Alzheimer's disease and mild cognitive impairment using SOM and PSO-SVM.

机构信息

Department of Electrical Engineering, Chang Gung University, Tao-Yuan 333, Taiwan.

出版信息

Comput Math Methods Med. 2013;2013:253670. doi: 10.1155/2013/253670. Epub 2013 May 7.

Abstract

In this study, an MRI-based classification framework was proposed to distinguish the patients with AD and MCI from normal participants by using multiple features and different classifiers. First, we extracted features (volume and shape) from MRI data by using a series of image processing steps. Subsequently, we applied principal component analysis (PCA) to convert a set of features of possibly correlated variables into a smaller set of values of linearly uncorrelated variables, decreasing the dimensions of feature space. Finally, we developed a novel data mining framework in combination with support vector machine (SVM) and particle swarm optimization (PSO) for the AD/MCI classification. In order to compare the hybrid method with traditional classifier, two kinds of classifiers, that is, SVM and a self-organizing map (SOM), were trained for patient classification. With the proposed framework, the classification accuracy is improved up to 82.35% and 77.78% in patients with AD and MCI. The result achieved up to 94.12% and 88.89% in AD and MCI by combining the volumetric features and shape features and using PCA. The present results suggest that novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression from MCI to AD.

摘要

在这项研究中,我们提出了一种基于 MRI 的分类框架,通过使用多种特征和不同的分类器来区分 AD 患者、MCI 患者和正常参与者。首先,我们通过一系列图像处理步骤从 MRI 数据中提取特征(体积和形状)。随后,我们应用主成分分析(PCA)将一组可能相关变量的特征转换为一组线性无关变量的较小值,降低特征空间的维度。最后,我们结合支持向量机(SVM)和粒子群优化(PSO)开发了一种新的数据挖掘框架,用于 AD/MCI 分类。为了将混合方法与传统分类器进行比较,我们使用两种分类器,即 SVM 和自组织映射(SOM),对患者进行分类。通过提出的框架,AD 和 MCI 患者的分类准确率分别提高到 82.35%和 77.78%。通过结合体积特征和形状特征并使用 PCA,AD 和 MCI 的准确率分别达到 94.12%和 88.89%。这些结果表明,新的模式匹配多元方法达到了临床相关的准确性,可以对从 MCI 到 AD 的进展进行先验预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/338a/3662202/9a81dc6dd5ec/CMMM2013-253670.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验