Garali Imene, Adel Mouloud, Bourennane Salah, Guedj Eric
Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelF-13013MarseilleFrance.
Institut de Neurosciences de la Timone UMR-CNRS 7289, Aix-Marseille Université13385MarseilleFrance.
IEEE J Transl Eng Health Med. 2018 Mar 16;6:2100212. doi: 10.1109/JTEHM.2018.2796600. eCollection 2018.
Positron emission tomography (PET) is a molecular medical imaging modality which is commonly used for neurodegenerative diseases diagnosis. Computer-aided diagnosis, based on medical image analysis, could help quantitative evaluation of brain diseases such as Alzheimer's disease (AD). A novel method of ranking the effectiveness of brain volume of interest (VOI) to separate healthy control from AD brains PET images is presented in this paper. Brain images are first mapped into anatomical VOIs using an atlas. Histogram-based features are then extracted and used to select and rank VOIs according to the area under curve (AUC) parameter, which produces a hierarchy of the ability of VOIs to separate between groups of subjects. The top-ranked VOIs are then input into a support vector machine classifier. The developed method is evaluated on a local database image and compared to the known selection feature methods. Results show that using AUC outperforms classification results in the case of a two group separation.
正电子发射断层扫描(PET)是一种分子医学成像模态,常用于神经退行性疾病的诊断。基于医学图像分析的计算机辅助诊断有助于对诸如阿尔茨海默病(AD)等脑部疾病进行定量评估。本文提出了一种对感兴趣脑区(VOI)的有效性进行排名的新方法,以将健康对照与AD患者的脑部PET图像区分开来。首先使用图谱将脑图像映射到解剖学VOI中。然后提取基于直方图的特征,并根据曲线下面积(AUC)参数对VOI进行选择和排序,这产生了VOI区分不同受试者组的能力层次结构。然后将排名靠前的VOI输入到支持向量机分类器中。在本地数据库图像上对所开发的方法进行评估,并与已知的选择特征方法进行比较。结果表明,在两组分离的情况下,使用AUC的分类结果优于其他方法。