Chen Weipeng, Zhang Qianru, Qian Yongchao, Xin Weiwen, Hao Dezhao, Zhao Xiaolu, Zhu Congcong, Kong Xiang-Yu, Lu Benzhuo, Jiang Lei, Wen Liping
Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
ACS Cent Sci. 2020 Nov 25;6(11):2097-2104. doi: 10.1021/acscentsci.0c01054. Epub 2020 Oct 13.
In nature, ultrafast signal transfer based on ion transport, which is the foundation of biological processes, commonly works in a hydrogel-water mixed mechanism. Inspired by organisms' hydrogel-based system, we introduce hydrogel into nanofluidics to prepare a hydrogel hybrid membrane. The introduction of a space charged hydrogel improves the ion selectivity evidently. Also, a power generator based on the hydrogel hybrid membrane shows an excellent energy conversion property; a maximum power density up to 11.72 W/m is achieved at a 500-fold salinity gradient. Furthermore, the membrane shows excellent mechanical properties. These values are achievable, which indicates our membrane's huge potential applications in osmotic energy conversion.
在自然界中,基于离子传输的超快信号传递是生物过程的基础,通常以水凝胶-水混合机制发挥作用。受生物体基于水凝胶的系统启发,我们将水凝胶引入纳米流体学中,制备了一种水凝胶混合膜。引入带空间电荷的水凝胶显著提高了离子选择性。此外,基于水凝胶混合膜的发电机显示出优异的能量转换性能;在500倍的盐度梯度下,实现了高达11.72 W/m的最大功率密度。此外,该膜还具有优异的机械性能。这些数值是可以实现的,这表明我们的膜在渗透能转换方面具有巨大的潜在应用价值。