Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
J Am Med Inform Assoc. 2014 Jan-Feb;21(1):132-8. doi: 10.1136/amiajnl-2012-001591. Epub 2013 Jun 6.
Increasing use of electronic health records (EHRs) provides new opportunities for public health surveillance. During the 2009 influenza A (H1N1) virus pandemic, we developed a new EHR-based influenza-like illness (ILI) surveillance system designed to be resource sparing, rapidly scalable, and flexible. 4 weeks after the first pandemic case, ILI data from Indian Health Service (IHS) facilities were being analyzed.
The system defines ILI as a patient visit containing either an influenza-specific International Classification of Disease, V.9 (ICD-9) code or one or more of 24 ILI-related ICD-9 codes plus a documented temperature ≥100°F. EHR-based data are uploaded nightly. To validate results, ILI visits identified by the new system were compared to ILI visits found by medical record review, and the new system's results were compared with those of the traditional US ILI Surveillance Network.
The system monitored ILI activity at an average of 60% of the 269 IHS electronic health databases. EHR-based surveillance detected ILI visits with a sensitivity of 96.4% and a specificity of 97.8% based on chart review (N=2375) of visits at two facilities in September 2009. At the peak of the pandemic (week 41, October 17, 2009), the median time from an ILI visit to data transmission was 6 days, with a mode of 1 day.
EHR-based ILI surveillance was accurate, timely, occurred at the majority of IHS facilities nationwide, and provided useful information for decision makers. EHRs thus offer the opportunity to transform public health surveillance.
电子健康记录(EHR)的使用不断增加,为公共卫生监测提供了新的机会。在 2009 年甲型 H1N1 流感大流行期间,我们开发了一种新的基于 EHR 的流感样疾病(ILI)监测系统,旨在节约资源、快速扩展和灵活。首例大流行病例发生后 4 周,印第安健康服务(IHS)设施的 ILI 数据开始进行分析。
该系统将 ILI 定义为包含流感特异性国际疾病分类,第 9 版(ICD-9)代码或一个或多个与 ILI 相关的 ICD-9 代码加一份记录的温度≥100°F 的患者就诊。基于 EHR 的数据每晚上传。为了验证结果,将新系统识别的 ILI 就诊与病历审查发现的 ILI 就诊进行比较,并且将新系统的结果与传统的美国 ILI 监测网络的结果进行比较。
该系统在 IHS 的 269 个电子健康数据库中的平均 60%监测 ILI 活动。基于 EHR 的监测以 96.4%的灵敏度和 97.8%的特异性(基于 2009 年 9 月在两个设施的 2375 次就诊的图表审查)检测到 ILI 就诊。在大流行高峰期(第 41 周,2009 年 10 月 17 日),从 ILI 就诊到数据传输的中位数时间为 6 天,模式为 1 天。
基于 EHR 的 ILI 监测准确、及时,在全国范围内大多数 IHS 设施进行,并为决策者提供了有用的信息。因此,EHR 为公共卫生监测带来了变革的机会。