Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8.
Department of Chemical and Physical Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8.
Microbiology (Reading). 2013 Aug;159(Pt 8):1618-1628. doi: 10.1099/mic.0.068932-0. Epub 2013 Jun 6.
Gordonia sp. strain NB4-1Y was isolated from vermicompost using bis-(3-pentafluorophenylpropyl)-sulfide as the sole added sulfur source and was found to have a broad capacity for metabolizing organosulfur compounds. NB4-1Y is closely related to G. desulfuricans and was found to metabolize 6 : 2 fluorotelomer sulfonate (6 : 2 FTS) to 5 : 3 fluorotelomer acid (5 : 3 acid) via 6 : 2 fluorotelomer acid (6 : 2 FTCA), 6 : 2 unsaturated fluorotelomer acid (6 : 2 FTUCA) and 5 : 3 unsaturated fluorotelomer acid (5 : 3 Uacid). Given that the molecular and biochemical basis for the microbial metabolism of poly- and per-fluorinated compounds has yet to be examined, we undertook to investigate 6 : 2 FTS metabolism in NB4-1Y. To this end, a whole-genome shotgun sequence was prepared and two-dimensional differential in-gel electrophoresis was used to compare proteomes of MgSO4- and 6 : 2 FTS-grown cells. Of the three putative alkanesulfonate monooxygenases, four nitrilotriacetate monooxygenases and one taurine dioxygenase located in the draft genome, two nitrilotriacetate monooxygenases were differentially expressed in the presence of 6 : 2 FTS. It is hypothesized that these two enzymes may be responsible for 6 : 2 FTS desulfonation. In addition, a differentially expressed putative double bond reductase may be involved in the reduction of 5 : 3 Uacid to 5 : 3 acid. Other proteins differentially expressed during 6 : 2 FTS metabolism included a sulfate ABC transporter ATP-binding protein and two alkyl hydroperoxide reductases. This work establishes a foundation for future studies on the molecular biology and biochemistry of poly- and per-fluorinated compound metabolism in bacteria.
从使用双-(3-五氟苯基丙基) 硫化物作为唯一添加硫源的蚯蚓堆肥中分离出 Gordonia 属菌株 NB4-1Y,该菌株具有广泛代谢有机硫化合物的能力。NB4-1Y 与 G. desulfuricans 密切相关,被发现可通过 6 : 2 氟代链烷磺酸(6 : 2 FTS)代谢为 5 : 3 氟代链烷酸(5 : 3 酸),途经 6 : 2 氟代链烷酸(6 : 2 FTCA)、6 : 2 不饱和氟代链烷酸(6 : 2 FTUCA)和 5 : 3 不饱和氟代链烷酸(5 : 3 Uacid)。鉴于多氟和全氟化合物微生物代谢的分子和生化基础尚未得到检验,我们着手研究 NB4-1Y 中 6 : 2 FTS 的代谢。为此,我们制备了全基因组鸟枪法序列,并使用二维差异凝胶电泳比较了 MgSO4 和 6 : 2 FTS 培养细胞的蛋白质组。在草案基因组中,有三个假定的链烷磺酸盐单加氧酶、四个氮川三乙酸单加氧酶和一个牛磺酸双加氧酶,其中两个氮川三乙酸单加氧酶在存在 6 : 2 FTS 时表达不同。据推测,这两种酶可能负责 6 : 2 FTS 的脱硫作用。此外,一个表达不同的假定双键还原酶可能参与 5 : 3 Uacid 向 5 : 3 酸的还原。6 : 2 FTS 代谢过程中表达不同的其他蛋白质包括硫酸盐 ABC 转运体 ATP 结合蛋白和两种烷基氢过氧化物还原酶。这项工作为今后研究细菌中多氟和全氟化合物代谢的分子生物学和生物化学奠定了基础。