Suppr超能文献

基于生理时间序列模式的急性缺血性中风预测

Acute ischaemic stroke prediction from physiological time series patterns.

作者信息

Zhang Qing, Xie Yang, Ye Pengjie, Pang Chaoyi

机构信息

Australian e-Health Research Centre/CSIRO ICT Centre.

出版信息

Australas Med J. 2013 May 30;6(5):280-6. doi: 10.4066/AMJ.2013.1650. Print 2013.

Abstract

BACKGROUND

Stroke is one of the major diseases with human mortality. Recent clinical research has indicated that early changes in common physiological variables represent a potential therapeutic target, thus the manipulation of these variables may eventually yield an effective way to optimise stroke recovery.

AIMS

We examined correlations between physiological parameters of patients during the first 48 hours after a stroke, and their stroke outcomes after three months. We wanted to discover physiological determinants that could be used to improve health outcomes by supporting the medical decisions that need to be made early on a patient's stroke experience.

METHOD

We applied regression-based machine learning techniques to build a prediction algorithm that can forecast threemonth outcomes from initial physiological time series data during the first 48 hours after stroke. In our method, not only did we use statistical characteristics as traditional prediction features, but we also adopted trend patterns of time series data as new key features.

RESULTS

We tested our prediction method on a real physiological data set of stroke patients. The experiment results revealed an average high precision rate: 90%. We also tested prediction methods only considering statistical characteristics of physiological data, and concluded an average precision rate: 71%.

CONCLUSION

We demonstrated that using trend pattern features in prediction methods improved the accuracy of stroke outcome prediction. Therefore, trend patterns of physiological time series data have an important role in the early treatment of patients with acute ischaemic stroke.

摘要

背景

中风是导致人类死亡的主要疾病之一。最近的临床研究表明,常见生理变量的早期变化代表了一个潜在的治疗靶点,因此对这些变量的调控最终可能会产生一种优化中风恢复的有效方法。

目的

我们研究了中风后48小时内患者生理参数与三个月后中风结局之间的相关性。我们希望发现生理决定因素,通过支持在患者中风早期需要做出的医疗决策来改善健康结局。

方法

我们应用基于回归的机器学习技术构建一种预测算法,该算法可以根据中风后48小时内的初始生理时间序列数据预测三个月后的结局。在我们的方法中,我们不仅使用统计特征作为传统的预测特征,还采用时间序列数据的趋势模式作为新的关键特征。

结果

我们在中风患者的真实生理数据集上测试了我们的预测方法。实验结果显示平均高精度率为90%。我们还测试了仅考虑生理数据统计特征的预测方法,得出平均精度率为71%。

结论

我们证明了在预测方法中使用趋势模式特征提高了中风结局预测的准确性。因此,生理时间序列数据的趋势模式在急性缺血性中风患者的早期治疗中具有重要作用。

相似文献

3
Predicting post-stroke pneumonia using deep neural network approaches.使用深度神经网络方法预测卒中后肺炎。
Int J Med Inform. 2019 Dec;132:103986. doi: 10.1016/j.ijmedinf.2019.103986. Epub 2019 Oct 1.
7
An intelligent warning model for early prediction of cardiac arrest in sepsis patients.脓毒症患者心脏骤停早期预测的智能预警模型。
Comput Methods Programs Biomed. 2019 Sep;178:47-58. doi: 10.1016/j.cmpb.2019.06.010. Epub 2019 Jun 11.

引用本文的文献

2
Role of Artificial Intelligence in TeleStroke: An Overview.人工智能在远程卒中中的作用:概述
Front Neurol. 2020 Oct 7;11:559322. doi: 10.3389/fneur.2020.559322. eCollection 2020.
5
Artificial intelligence in healthcare: past, present and future.人工智能在医疗保健中的应用:过去、现在和未来。
Stroke Vasc Neurol. 2017 Jun 21;2(4):230-243. doi: 10.1136/svn-2017-000101. eCollection 2017 Dec.
6
Artificial intelligence in health - the three big challenges.健康领域的人工智能——三大挑战。
Australas Med J. 2013 May 30;6(5):315-7. doi: 10.4066/AMJ.2013.1758. Print 2013.

本文引用的文献

2
Longitudinal falls-risk estimation using triaxial accelerometry.使用三轴加速度计进行纵向跌倒风险估计。
IEEE Trans Biomed Eng. 2010 Mar;57(3):534-41. doi: 10.1109/TBME.2009.2033038. Epub 2009 Sep 29.
3
Brain injury and fever: hospital length of stay and cost outcomes.
J Intensive Care Med. 2009 Mar-Apr;24(2):131-9. doi: 10.1177/0885066608330211. Epub 2009 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验