Zhang Qing, Xie Yang, Ye Pengjie, Pang Chaoyi
Australian e-Health Research Centre/CSIRO ICT Centre.
Australas Med J. 2013 May 30;6(5):280-6. doi: 10.4066/AMJ.2013.1650. Print 2013.
Stroke is one of the major diseases with human mortality. Recent clinical research has indicated that early changes in common physiological variables represent a potential therapeutic target, thus the manipulation of these variables may eventually yield an effective way to optimise stroke recovery.
We examined correlations between physiological parameters of patients during the first 48 hours after a stroke, and their stroke outcomes after three months. We wanted to discover physiological determinants that could be used to improve health outcomes by supporting the medical decisions that need to be made early on a patient's stroke experience.
We applied regression-based machine learning techniques to build a prediction algorithm that can forecast threemonth outcomes from initial physiological time series data during the first 48 hours after stroke. In our method, not only did we use statistical characteristics as traditional prediction features, but we also adopted trend patterns of time series data as new key features.
We tested our prediction method on a real physiological data set of stroke patients. The experiment results revealed an average high precision rate: 90%. We also tested prediction methods only considering statistical characteristics of physiological data, and concluded an average precision rate: 71%.
We demonstrated that using trend pattern features in prediction methods improved the accuracy of stroke outcome prediction. Therefore, trend patterns of physiological time series data have an important role in the early treatment of patients with acute ischaemic stroke.
中风是导致人类死亡的主要疾病之一。最近的临床研究表明,常见生理变量的早期变化代表了一个潜在的治疗靶点,因此对这些变量的调控最终可能会产生一种优化中风恢复的有效方法。
我们研究了中风后48小时内患者生理参数与三个月后中风结局之间的相关性。我们希望发现生理决定因素,通过支持在患者中风早期需要做出的医疗决策来改善健康结局。
我们应用基于回归的机器学习技术构建一种预测算法,该算法可以根据中风后48小时内的初始生理时间序列数据预测三个月后的结局。在我们的方法中,我们不仅使用统计特征作为传统的预测特征,还采用时间序列数据的趋势模式作为新的关键特征。
我们在中风患者的真实生理数据集上测试了我们的预测方法。实验结果显示平均高精度率为90%。我们还测试了仅考虑生理数据统计特征的预测方法,得出平均精度率为71%。
我们证明了在预测方法中使用趋势模式特征提高了中风结局预测的准确性。因此,生理时间序列数据的趋势模式在急性缺血性中风患者的早期治疗中具有重要作用。