Suppr超能文献

超宽线固态核磁共振波谱学。

Ultra-wideline solid-state NMR spectroscopy.

机构信息

Department of Chemistry and Biochemistry, University of Windsor , Windsor, ON, Canada N9B 3P4.

出版信息

Acc Chem Res. 2013 Sep 17;46(9):1985-95. doi: 10.1021/ar400045t. Epub 2013 Jun 7.

Abstract

Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses.

摘要

尽管固态核磁共振(SSNMR)提供了有关分子结构和动力学的丰富信息,但引起 NMR 跃迁的自旋态对自旋的微小自旋群体差异使得它在信号获取方面成为一种固有不灵敏的光谱技术。科学家们通过改进 NMR 硬件和探头、增加磁场强度以及开发创新的脉冲序列和采集方法,不断解决这个问题。因此,研究人员现在可以研究以前认为无法观察或通过 SSNMR 进行常规检查的 NMR 活性核素。有几个因素可能会使使用 SSNMR 检测信号或获取光谱变得极具挑战性:(i)低旋磁比(即低拉莫尔频率),(ii)感兴趣核素的低天然丰度或稀释(例如,蛋白质中的金属核素或负载在硅胶上的有机金属催化剂中的金属核素),(iii)不方便的弛豫特性(例如,非常长的纵向或非常短的横向弛豫时间)和/或(iv)源自大各向异性 NMR 相互作用的极宽粉末图案。我们的研究小组一直对高效获取各种自旋-1/2 和四极(自旋>1/2)核素的宽 NMR 粉末图案特别感兴趣。传统上,研究人员使用“宽线”NMR 一词来表示产生从几十千赫兹到约 250 千赫兹宽的宽(1)H 和(2)H SSNMR 光谱的实验。在现代 FT NMR 硬件中,在这些光谱范围内均匀激发相对容易,从而可以获得高质量的光谱。然而,从约 250 千赫兹到数十兆赫兹宽的光谱不能用传统的高功率矩形脉冲均匀激发。相反,研究人员必须应用特殊方法来获取此类光谱,由于信号强度分布在如此大的光谱宽度上,因此这些光谱固有地具有低 S/N。我们建议使用超宽线 NMR(UWNMR)光谱学来描述这组方法。本专题介绍了高效获取 UWNMR 光谱的脉冲序列和策略的最新发展。在介绍各向异性展宽的 NMR 模式之后,我们简要回顾了用于获取 UWNMR 光谱的方法历史。然后,我们讨论了新的采集方法,包括 CPMG 回波链的采集和宽带激发和聚焦的脉冲的应用。最后,我们介绍了使用这些宽带脉冲的 UWNMR 方法的几个应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验