Suppr超能文献

解开脑图谱:关于网络分析与连通性分析混淆的一则笔记

Disentangling Brain Graphs: A Note on the Conflation of Network and Connectivity Analyses.

作者信息

Simpson Sean L, Laurienti Paul J

机构信息

1 Department of Biostatistical Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.

2 Laboratory for Complex Brain Networks, Wake Forest School of Medicine , Winston-Salem, North Carolina.

出版信息

Brain Connect. 2016 Mar;6(2):95-8. doi: 10.1089/brain.2015.0361. Epub 2015 Oct 15.

Abstract

Understanding the human brain remains the holy grail in biomedical science, and arguably in all of the sciences. Our brains represent the most complex systems in the world (and some contend the universe) comprising nearly 100 billion neurons with septillions of possible connections between them. The structure of these connections engenders an efficient hierarchical system capable of consciousness, as well as complex thoughts, feelings, and behaviors. Brain connectivity and network analyses have exploded over the last decade due to their potential in helping us understand both normal and abnormal brain function. Functional connectivity (FC) analysis examines functional associations between time series pairs in specified brain voxels or regions. Brain network analysis serves as a distinct subfield of connectivity analysis, in which associations are quantified for all time series pairs to create an interconnected representation of the brain (a brain network), which allows studying its systemic properties. While connectivity analyses underlie network analyses, the subtle distinction between the two research areas has generally been overlooked in the literature, with them often being referred to synonymously. However, developing more useful analytic methods and allowing for more precise biological interpretations require distinguishing these two complementary domains.

摘要

了解人类大脑仍然是生物医学科学乃至所有科学领域中的圣杯。我们的大脑是世界上最复杂的系统(有些人认为是宇宙中最复杂的系统),由近1000亿个神经元组成,它们之间可能存在无数的连接。这些连接的结构形成了一个高效的分层系统,能够产生意识以及复杂的思想、情感和行为。在过去十年中,脑连接性和网络分析蓬勃发展,因为它们有潜力帮助我们理解正常和异常的脑功能。功能连接(FC)分析研究特定脑体素或区域中时间序列对之间的功能关联。脑网络分析是连接性分析的一个独特子领域,其中对所有时间序列对的关联进行量化,以创建大脑的相互连接表示(脑网络),从而可以研究其系统特性。虽然连接性分析是网络分析的基础,但这两个研究领域之间的细微差别在文献中通常被忽视,它们常常被同义提及。然而,开发更有用的分析方法并进行更精确的生物学解释需要区分这两个互补领域。

相似文献

4
The human connectome: a complex network.人类连接组:一个复杂的网络。
Ann N Y Acad Sci. 2011 Apr;1224:109-125. doi: 10.1111/j.1749-6632.2010.05888.x. Epub 2011 Jan 4.
5
Network centrality in the human functional connectome.人类功能连接组中的网络中心性。
Cereb Cortex. 2012 Aug;22(8):1862-75. doi: 10.1093/cercor/bhr269. Epub 2011 Oct 2.
6
The organization of physiological brain networks.生理脑网络的组织。
Clin Neurophysiol. 2012 Jun;123(6):1067-87. doi: 10.1016/j.clinph.2012.01.011. Epub 2012 Feb 21.
7
The human connectome: origins and challenges.人类连接组:起源与挑战。
Neuroimage. 2013 Oct 15;80:53-61. doi: 10.1016/j.neuroimage.2013.03.023. Epub 2013 Mar 23.
8
Functional connectivity hubs of the mouse brain.小鼠大脑的功能连接枢纽
Neuroimage. 2015 Jul 15;115:281-91. doi: 10.1016/j.neuroimage.2015.04.033. Epub 2015 Apr 23.

引用本文的文献

1
Statistical Brain Network Analysis.统计脑网络分析
Annu Rev Stat Appl. 2024;11:505-531. doi: 10.1146/annurev-statistics-040522-020722. Epub 2023 Nov 27.
3
Brain Network Analysis: A Review on Multivariate Analytical Methods.脑网络分析:多元分析方法综述。
Brain Connect. 2023 Mar;13(2):64-79. doi: 10.1089/brain.2022.0007. Epub 2022 Oct 31.
4
A mixed-modeling framework for whole-brain dynamic network analysis.用于全脑动态网络分析的混合建模框架。
Netw Neurosci. 2022 Jun 1;6(2):591-613. doi: 10.1162/netn_a_00238. eCollection 2022 Jun.
9
10
A difference degree test for comparing brain networks.比较脑网络的差异度检验。
Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.

本文引用的文献

3
The connectomics of brain disorders.脑疾病的连接组学
Nat Rev Neurosci. 2015 Mar;16(3):159-72. doi: 10.1038/nrn3901.
4
The functional connectivity landscape of the human brain.人类大脑的功能连接图谱
PLoS One. 2014 Oct 28;9(10):e111007. doi: 10.1371/journal.pone.0111007. eCollection 2014.
8
Functional connectomics from resting-state fMRI.静息态 fMRI 的功能连接组学
Trends Cogn Sci. 2013 Dec;17(12):666-82. doi: 10.1016/j.tics.2013.09.016. Epub 2013 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验