Suppr超能文献

脑信号变异性可通过参数进行调节。

Brain signal variability is parametrically modifiable.

作者信息

Garrett Douglas D, McIntosh Anthony R, Grady Cheryl L

机构信息

Max Planck Society-University College London Initiative for Computational Psychiatry and Ageing Research (ICPAR), Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany.

Rotman Research Institute, Toronto, Ontario, Canada M6A 2E1, Department of Psychology, University of Toronto, Toronto, ON, Canada M5S 3G3 and.

出版信息

Cereb Cortex. 2014 Nov;24(11):2931-40. doi: 10.1093/cercor/bht150. Epub 2013 Jun 7.

Abstract

Moment-to-moment brain signal variability is a ubiquitous neural characteristic, yet remains poorly understood. Evidence indicates that heightened signal variability can index and aid efficient neural function, but it is not known whether signal variability responds to precise levels of environmental demand, or instead whether variability is relatively static. Using multivariate modeling of functional magnetic resonance imaging-based parametric face processing data, we show here that within-person signal variability level responds to incremental adjustments in task difficulty, in a manner entirely distinct from results produced by examining mean brain signals. Using mixed modeling, we also linked parametric modulations in signal variability with modulations in task performance. We found that difficulty-related reductions in signal variability predicted reduced accuracy and longer reaction times within-person; mean signal changes were not predictive. We further probed the various differences between signal variance and signal means by examining all voxels, subjects, and conditions; this analysis of over 2 million data points failed to reveal any notable relations between voxel variances and means. Our results suggest that brain signal variability provides a systematic task-driven signal of interest from which we can understand the dynamic function of the human brain, and in a way that mean signals cannot capture.

摘要

大脑信号的瞬间变异性是一种普遍存在的神经特征,但人们对其仍知之甚少。有证据表明,信号变异性增强可以指示并有助于高效的神经功能,但尚不清楚信号变异性是对精确水平的环境需求做出反应,还是变异性相对较为静态。通过对基于功能磁共振成像的参数化面部处理数据进行多变量建模,我们在此表明,个体内部的信号变异性水平会以一种与检查平均脑信号所产生的结果完全不同的方式,对任务难度的增量调整做出反应。使用混合建模,我们还将信号变异性的参数调制与任务表现的调制联系起来。我们发现,与难度相关的信号变异性降低预示着个体内部准确性降低和反应时间延长;平均信号变化并无预测作用。我们通过检查所有体素、受试者和条件,进一步探究了信号方差与信号均值之间的各种差异;对超过200万个数据点的分析未能揭示体素方差与均值之间的任何显著关系。我们的结果表明,大脑信号变异性提供了一个由任务驱动的系统性感兴趣信号,通过这种方式我们可以理解人类大脑的动态功能,而这是平均信号无法捕捉到的。

相似文献

1
Brain signal variability is parametrically modifiable.脑信号变异性可通过参数进行调节。
Cereb Cortex. 2014 Nov;24(11):2931-40. doi: 10.1093/cercor/bht150. Epub 2013 Jun 7.
7
Neural developmental changes in processing inverted faces.处理倒置面孔时的神经发育变化。
Cogn Affect Behav Neurosci. 2006 Sep;6(3):223-35. doi: 10.3758/cabn.6.3.223.
10
Task-invariant brain responses to the social value of faces.对人脸社会价值的任务不变的大脑反应。
J Cogn Neurosci. 2011 Oct;23(10):2766-81. doi: 10.1162/jocn.2011.21616. Epub 2011 Jan 21.

引用本文的文献

本文引用的文献

2
7
The role of physiological noise in resting-state functional connectivity.生理噪声在静息态功能连接中的作用。
Neuroimage. 2012 Aug 15;62(2):864-70. doi: 10.1016/j.neuroimage.2012.01.016. Epub 2012 Jan 8.
8
Functional embedding predicts the variability of neural activity.功能嵌入预测神经活动的可变性。
Front Syst Neurosci. 2011 Nov 22;5:90. doi: 10.3389/fnsys.2011.00090. eCollection 2011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验