Suppr超能文献

通过整合代谢和进化工程提高纤维素梭菌生产正丁醇的能力。

Improved -Butanol Production from Clostridium cellulovorans by Integrated Metabolic and Evolutionary Engineering.

机构信息

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

Department of Bioengineering, Imperial College London, London, United Kingdom.

出版信息

Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02560-18. Print 2019 Apr 1.

Abstract

DSM 743B offers potential as a chassis strain for biomass refining by consolidated bioprocessing (CBP). However, its -butanol production from lignocellulosic biomass has yet to be demonstrated. This study demonstrates the construction of a coenzyme A (CoA)-dependent acetone-butanol-ethanol (ABE) pathway in by introducing and genes from ATCC 824, which enabled it to produce -butanol using the abundant and low-cost agricultural waste of alkali-extracted, deshelled corn cobs (AECC) as the sole carbon source. Then, a novel adaptive laboratory evolution (ALE) approach was adapted to strengthen the -butanol tolerance of to fully utilize its -butanol output potential. To further improve -butanol production, both metabolic engineering and evolutionary engineering were combined, using the evolved strain as a host for metabolic engineering. The -butanol production from AECC of the engineered was increased 138-fold, from less than 0.025 g/liter to 3.47 g/liter. This method represents a milestone toward -butanol production by CBP, using a single recombinant clostridium strain. The engineered strain offers a promising CBP-enabling microbial chassis for -butanol fermentation from lignocellulose. Due to a lack of genetic tools, DSM 743B has not been comprehensively explored as a putative strain platform for -butanol production by consolidated bioprocessing (CBP). Based on the previous study of genetic tools, strain engineering of for the development of a CBP-enabling microbial chassis was demonstrated in this study. Metabolic engineering and evolutionary engineering were integrated to improve the -butanol production of from the low-cost renewable agricultural waste of alkali-extracted, deshelled corn cobs (AECC). The -butanol production from AECC was increased 138-fold, from less than 0.025 g/liter to 3.47 g/liter, which represents the highest titer of -butanol produced using a single recombinant clostridium strain by CBP reported to date. This engineered strain serves as a promising chassis for -butanol production from lignocellulose by CBP.

摘要

DSM 743B 作为一种底盘菌株,通过整合生物加工(CBP)具有生物量精炼的潜力。然而,它从木质纤维素生物质生产正丁醇的能力尚未得到证明。本研究通过引入来自 ATCC 824 的辅酶 A(CoA)依赖性丙酮丁醇乙醇(ABE)途径的 和 基因,在 中构建了该途径,从而使其能够使用丰富且廉价的农业废弃物碱提取脱壳玉米芯(AECC)作为唯一的碳源生产正丁醇。然后,采用一种新的适应性实验室进化(ALE)方法来增强 对正丁醇的耐受性,以充分利用其正丁醇生产潜力。为了进一步提高正丁醇的产量,采用代谢工程和进化工程相结合的方法,利用进化后的菌株作为宿主进行代谢工程。通过代谢工程,工程菌从 AECC 中生产的正丁醇产量增加了 138 倍,从不到 0.025g/L 增加到 3.47g/L。这种方法代表了使用单一重组梭菌菌株通过 CBP 生产正丁醇的一个里程碑。该工程菌株为木质纤维素通过 CBP 发酵生产正丁醇提供了一种很有前途的 CBP 使能微生物底盘。由于缺乏遗传工具,DSM 743B 尚未作为通过整合生物加工(CBP)生产正丁醇的潜在菌株平台进行全面探索。基于先前对遗传工具的研究,本研究中展示了对 进行菌株工程改造,以开发 CBP 使能微生物底盘。本研究整合了代谢工程和进化工程,以提高 从低成本可再生农业废弃物碱提取脱壳玉米芯(AECC)中生产正丁醇的能力。AECC 生产正丁醇的产量增加了 138 倍,从不到 0.025g/L 增加到 3.47g/L,这是迄今为止报道的通过 CBP 用单个重组梭菌菌株生产的最高正丁醇浓度。该工程菌株为通过 CBP 从木质纤维素生产正丁醇提供了一个很有前途的底盘。

相似文献

1
Improved -Butanol Production from Clostridium cellulovorans by Integrated Metabolic and Evolutionary Engineering.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02560-18. Print 2019 Apr 1.
3
Metabolic Engineering of to Improve Butanol Production by Consolidated Bioprocessing.
ACS Synth Biol. 2020 Feb 21;9(2):304-315. doi: 10.1021/acssynbio.9b00331. Epub 2020 Jan 24.
4
Engineering Clostridium cellulovorans for highly selective n-butanol production from cellulose in consolidated bioprocessing.
Biotechnol Bioeng. 2021 Jul;118(7):2703-2718. doi: 10.1002/bit.27789. Epub 2021 Apr 23.
5
Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach.
J Proteomics. 2020 Mar 30;216:103667. doi: 10.1016/j.jprot.2020.103667. Epub 2020 Jan 23.
6
Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.
Metab Eng. 2015 Nov;32:39-48. doi: 10.1016/j.ymben.2015.09.001. Epub 2015 Sep 11.
8
Enhanced solvent production by metabolic engineering of a twin-clostridial consortium.
Metab Eng. 2017 Jan;39:38-48. doi: 10.1016/j.ymben.2016.10.013. Epub 2016 Oct 27.
9
n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases.
Bioresour Technol. 2019 Aug;285:121316. doi: 10.1016/j.biortech.2019.121316. Epub 2019 Apr 3.
10
Engineering Clostridium for improved solvent production: recent progress and perspective.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5549-5566. doi: 10.1007/s00253-019-09916-7. Epub 2019 May 29.

引用本文的文献

1
SMC-like Wadjet system prevents plasmid transfer into Clostridium cellulovorans.
Appl Microbiol Biotechnol. 2025 Jul 23;109(1):170. doi: 10.1007/s00253-025-13551-w.
2
Research advances on the consolidated bioprocessing of lignocellulosic biomass.
Eng Microbiol. 2024 Feb 2;4(2):100139. doi: 10.1016/j.engmic.2024.100139. eCollection 2024 Jun.
3
The potential of native and engineered Clostridia for biomass biorefining.
Front Bioeng Biotechnol. 2024 Aug 16;12:1423935. doi: 10.3389/fbioe.2024.1423935. eCollection 2024.
4
Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives.
Front Bioeng Biotechnol. 2023 Oct 25;11:1272429. doi: 10.3389/fbioe.2023.1272429. eCollection 2023.
5
Single and multiplexed gene repression in solventogenic via Cas12a-based CRISPR interference.
Synth Syst Biotechnol. 2022 Dec 24;8(1):148-156. doi: 10.1016/j.synbio.2022.12.005. eCollection 2023 Mar.
6
Enzymatic Characterization of Unused Biomass Degradation Using the Cellulosome.
Microorganisms. 2022 Dec 19;10(12):2514. doi: 10.3390/microorganisms10122514.
8
9
Editorial: Microorganisms for Consolidated 2nd Generation Biorefining.
Front Microbiol. 2022 Jun 17;13:940610. doi: 10.3389/fmicb.2022.940610. eCollection 2022.
10
Butanol-isopropanol fermentation with oxygen-tolerant Clostridium beijerinckii XH29.
AMB Express. 2022 May 14;12(1):57. doi: 10.1186/s13568-022-01399-6.

本文引用的文献

3
Progress and perspectives on improving butanol tolerance.
World J Microbiol Biotechnol. 2017 Mar;33(3):51. doi: 10.1007/s11274-017-2220-y. Epub 2017 Feb 11.
4
Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum.
Metab Eng. 2017 Mar;40:138-147. doi: 10.1016/j.ymben.2017.01.011. Epub 2017 Jan 31.
5
Enhanced solvent production by metabolic engineering of a twin-clostridial consortium.
Metab Eng. 2017 Jan;39:38-48. doi: 10.1016/j.ymben.2016.10.013. Epub 2016 Oct 27.
6
Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.
J Am Chem Soc. 2016 Nov 30;138(47):15368-15377. doi: 10.1021/jacs.6b07394. Epub 2016 Oct 31.
7
Clostridia: a flexible microbial platform for the production of alcohols.
Curr Opin Chem Biol. 2016 Dec;35:65-72. doi: 10.1016/j.cbpa.2016.08.024. Epub 2016 Sep 10.
8
Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824.
Biotechnol Biofuels. 2016 May 23;9:109. doi: 10.1186/s13068-016-0526-x. eCollection 2016.
10
Frontiers in microbial 1-butanol and isobutanol production.
FEMS Microbiol Lett. 2016 Mar;363(5):fnw020. doi: 10.1093/femsle/fnw020. Epub 2016 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验