Suppr超能文献

在甲基化组、转录组和 miRNA 组分析中,始终观察到 HNSCC 的预后不良亚型。

A poor prognosis subtype of HNSCC is consistently observed across methylome, transcriptome, and miRNome analysis.

机构信息

EA3430, Laboratoire de Biologie Tumorale, Centre Régional de Lutte Contre le Cancer Paul Strauss, 3 Rue de la Porte de l'Hôpital, Strasbourg, France.

出版信息

Clin Cancer Res. 2013 Aug 1;19(15):4174-84. doi: 10.1158/1078-0432.CCR-12-3690. Epub 2013 Jun 11.

Abstract

PURPOSE

Distant metastasis after treatment is observed in about 20% of squamous cell carcinoma of the head and neck (HNSCC). In the absence of any validated robust biomarker, patients at higher risk for metastasis cannot be provided with tailored therapy. To identify prognostic HNSCC molecular subgroups and potential biomarkers, we have conducted genome-wide integrated analysis of four omic sets of data.

EXPERIMENTAL DESIGN

Using state-of-the-art technologies, a core set of 45 metastasizing and 55 nonmetastasizing human papillomavirus (HPV)-unrelated HNSCC patient samples were analyzed at four different levels: gene expression (transcriptome), DNA methylation (methylome), DNA copy number (genome), and microRNA (miRNA) expression (miRNome). Molecular subgroups were identified by a model-based clustering analysis. Their clinical relevance was evaluated by survival analysis, and functional significance by pathway enrichment analysis.

RESULTS

Patient subgroups selected by transcriptome, methylome, or miRNome integrated analysis are associated with shorter metastasis-free survival (MFS). A common subgroup, R1, selected by all three omic approaches, is statistically more significantly associated with MFS than any of the single omic-selected subgroups. R1 and non-R1 samples display similar DNA copy number landscapes, but more frequent chromosomal aberrations are observed in the R1 cluster (especially loss at 13q14.2-3). R1 tumors are characterized by alterations of pathways involved in cell-cell adhesion, extracellular matrix (ECM), epithelial-to-mesenchymal transition (EMT), immune response, and apoptosis.

CONCLUSIONS

Integration of data across several omic profiles leads to better selection of patients at higher risk, identification of relevant molecular pathways of metastasis, and potential to discover biomarkers and drug targets.

摘要

目的

治疗后观察到约 20%的头颈部鳞状细胞癌(HNSCC)发生远处转移。在缺乏任何经过验证的稳健生物标志物的情况下,无法为具有更高转移风险的患者提供针对性治疗。为了鉴定具有预后意义的 HNSCC 分子亚群和潜在的生物标志物,我们对 4 组组学数据进行了全基因组综合分析。

实验设计

使用最先进的技术,对 45 例转移性和 55 例非转移性人乳头瘤病毒(HPV)相关 HNSCC 患者的核心样本进行了 4 个不同水平的分析:基因表达(转录组)、DNA 甲基化(甲基组)、DNA 拷贝数(基因组)和 microRNA(miRNA)表达(miRNome)。通过基于模型的聚类分析确定分子亚群。通过生存分析评估其临床相关性,并通过通路富集分析评估其功能意义。

结果

通过转录组、甲基组或 miRNome 综合分析选择的患者亚群与无转移生存(MFS)较短相关。通过所有三种组学方法选择的共同亚群 R1 与 MFS 的统计学相关性明显优于任何单个组学选择的亚群。R1 和非 R1 样本显示出相似的 DNA 拷贝数图谱,但在 R1 簇中观察到更多的染色体畸变(特别是 13q14.2-3 缺失)。R1 肿瘤的特征是涉及细胞-细胞黏附、细胞外基质(ECM)、上皮-间充质转化(EMT)、免疫反应和细胞凋亡的通路发生改变。

结论

跨多个组学数据的整合可更好地选择高风险患者,鉴定与转移相关的分子途径,并有可能发现生物标志物和药物靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验