Suppr超能文献

海马体中的θ协调误差驱动学习。

Theta coordinated error-driven learning in the hippocampus.

机构信息

Department of Psychology, University of Colorado Boulder, Boulder, Colorado, United States of America.

出版信息

PLoS Comput Biol. 2013;9(6):e1003067. doi: 10.1371/journal.pcbi.1003067. Epub 2013 Jun 6.

Abstract

The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later. However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1 pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available previously under the classical Hebbian model.

摘要

海马体中的学习机制几乎普遍被认为是赫布式的,即记忆痕迹中的单个神经元通过突触权重的增加而连接在一起,以支持稍后对记忆的促进回忆。然而,人们也广泛知道,赫布式学习机制施加了显著的容量限制,并且通常不如利用误差信号的学习机制计算能力强。我们表明,海马体亚区在整体 theta 节律中的差异相位关系能够实现一种强大的误差驱动学习形式,这导致了显著更大的容量,如计算机模拟所示。在 theta 周期的一个相位中,CA1 和内嗅皮层之间的双向连接可以以误差驱动的方式进行训练,以学习在 CA1 中以紧凑和稀疏的形式有效地编码皮质输入。在 theta 周期的后续部分中,系统通过从内嗅皮层到 CA3 和 CA1 的途径尝试回忆现有的记忆。最后,当通过内嗅皮层的直接投射将当前输入的强目标编码表示施加到 CA1 上时,整个 theta 周期完成。这个目标编码与在 CA1 上尝试回忆相同表示之间的差异构成了一个误差信号,可以驱动 CA3 到 CA1 突触的学习。CA3 到 CA1 的通路对于在皮质中完全恢复回忆的海马体记忆至关重要。总之,这些新的学习动态比以前在经典赫布模型下提供的更强大、高容量的海马体学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41b0/3675133/db1ed1909bf6/pcbi.1003067.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验