Department of Psychology, University of California, Davis, California, United States of America.
Center for Neuroscience, University of California, Davis, California, United States of America.
PLoS Comput Biol. 2022 Oct 11;18(10):e1010589. doi: 10.1371/journal.pcbi.1010589. eCollection 2022 Oct.
The hippocampus plays a critical role in the rapid learning of new episodic memories. Many computational models propose that the hippocampus is an autoassociator that relies on Hebbian learning (i.e., "cells that fire together, wire together"). However, Hebbian learning is computationally suboptimal as it does not learn in a way that is driven toward, and limited by, the objective of achieving effective retrieval. Thus, Hebbian learning results in more interference and a lower overall capacity. Our previous computational models have utilized a powerful, biologically plausible form of error-driven learning in hippocampal CA1 and entorhinal cortex (EC) (functioning as a sparse autoencoder) by contrasting local activity states at different phases in the theta cycle. Based on specific neural data and a recent abstract computational model, we propose a new model called Theremin (Total Hippocampal ERror MINimization) that extends error-driven learning to area CA3-the mnemonic heart of the hippocampal system. In the model, CA3 responds to the EC monosynaptic input prior to the EC disynaptic input through dentate gyrus (DG), giving rise to a temporal difference between these two activation states, which drives error-driven learning in the EC→CA3 and CA3↔CA3 projections. In effect, DG serves as a teacher to CA3, correcting its patterns into more pattern-separated ones, thereby reducing interference. Results showed that Theremin, compared with our original Hebbian-based model, has significantly increased capacity and learning speed. The model makes several novel predictions that can be tested in future studies.
海马体在新情景记忆的快速学习中起着关键作用。许多计算模型提出,海马体是一种自联想器,依赖于赫布学习(即“一起发射的细胞,一起连接”)。然而,赫布学习在计算上是次优的,因为它不以一种朝向并受限于实现有效检索的目标的方式进行学习。因此,赫布学习导致更多的干扰和整体容量降低。我们之前的计算模型已经在海马体 CA1 和内嗅皮层(EC)中利用了一种强大的、基于生物学的误差驱动学习形式(作为稀疏自编码器),通过对比在 theta 周期不同阶段的局部活动状态。基于特定的神经数据和最近的一个抽象计算模型,我们提出了一个新的模型,称为 Theremin(Total Hippocampal ERror MINimization),它将误差驱动学习扩展到 CA3 区域——海马体系统的记忆核心。在该模型中,CA3 在 EC 双突触输入之前对 EC 单突触输入作出反应,通过齿状回(DG)产生这两种激活状态之间的时间差,从而驱动 EC→CA3 和 CA3↔CA3 投射中的误差驱动学习。实际上,DG 充当 CA3 的教师,将其模式纠正为更具模式分离的模式,从而减少干扰。结果表明,与我们最初的基于赫布的模型相比,Theremin 具有显著增加的容量和学习速度。该模型提出了一些新的预测,可以在未来的研究中进行测试。