Suppr超能文献

HyMaP:一种用于乳腺癌组织学图像中肿瘤区域无监督分割的混合幅度-相位方法。

HyMaP: A hybrid magnitude-phase approach to unsupervised segmentation of tumor areas in breast cancer histology images.

作者信息

Khan Adnan M, El-Daly Hesham, Simmons Emma, Rajpoot Nasir M

机构信息

Department of Computer Science, University of Warwick, UK.

出版信息

J Pathol Inform. 2013 Mar 30;4(Suppl):S1. doi: 10.4103/2153-3539.109802. Print 2013.

Abstract

BACKGROUND

Segmentation of areas containing tumor cells in standard H&E histopathology images of breast (and several other tissues) is a key task for computer-assisted assessment and grading of histopathology slides. Good segmentation of tumor regions is also vital for automated scoring of immunohistochemical stained slides to restrict the scoring or analysis to areas containing tumor cells only and avoid potentially misleading results from analysis of stromal regions. Furthermore, detection of mitotic cells is critical for calculating key measures such as mitotic index; a key criteria for grading several types of cancers including breast cancer. We show that tumor segmentation can allow detection and quantification of mitotic cells from the standard H&E slides with a high degree of accuracy without need for special stains, in turn making the whole process more cost-effective.

METHOD

BASED ON THE TISSUE MORPHOLOGY, BREAST HISTOLOGY IMAGE CONTENTS CAN BE DIVIDED INTO FOUR REGIONS: Tumor, Hypocellular Stroma (HypoCS), Hypercellular Stroma (HyperCS), and tissue fat (Background). Background is removed during the preprocessing stage on the basis of color thresholding, while HypoCS and HyperCS regions are segmented by calculating features using magnitude and phase spectra in the frequency domain, respectively, and performing unsupervised segmentation on these features.

RESULTS

All images in the database were hand segmented by two expert pathologists. The algorithms considered here are evaluated on three pixel-wise accuracy measures: precision, recall, and F1-Score. The segmentation results obtained by combining HypoCS and HyperCS yield high F1-Score of 0.86 and 0.89 with re-spect to the ground truth.

CONCLUSIONS

In this paper, we show that segmentation of breast histopathology image into hypocellular stroma and hypercellular stroma can be achieved using magnitude and phase spectra in the frequency domain. The segmentation leads to demarcation of tumor margins leading to improved accuracy of mitotic cell detection.

摘要

背景

在乳腺(以及其他几种组织)的标准苏木精-伊红(H&E)组织病理学图像中,对包含肿瘤细胞的区域进行分割是计算机辅助评估和组织病理学切片分级的关键任务。肿瘤区域的良好分割对于免疫组织化学染色切片的自动评分也至关重要,以便将评分或分析限制在仅包含肿瘤细胞的区域,并避免因基质区域分析而产生潜在误导性结果。此外,有丝分裂细胞的检测对于计算诸如有丝分裂指数等关键指标至关重要;有丝分裂指数是包括乳腺癌在内的几种癌症分级的关键标准。我们表明,肿瘤分割能够以高度准确性从标准H&E切片中检测和量化有丝分裂细胞,而无需特殊染色,从而使整个过程更具成本效益。

方法

基于组织形态学,乳腺组织学图像内容可分为四个区域:肿瘤、低细胞基质(HypoCS)、高细胞基质(HyperCS)和组织脂肪(背景)。在预处理阶段,根据颜色阈值去除背景,而HypoCS和HyperCS区域分别通过在频域中使用幅度谱和相位谱计算特征,并对这些特征进行无监督分割来进行分割。

结果

数据库中的所有图像均由两位专家病理学家手动分割。这里考虑的算法根据三种逐像素准确性度量进行评估:精确率、召回率和F1分数。将HypoCS和HyperCS相结合获得的分割结果相对于真实情况产生了高达0.86和0.89的F1分数。

结论

在本文中,我们表明使用频域中的幅度谱和相位谱可以将乳腺组织病理学图像分割为低细胞基质和高细胞基质。这种分割导致肿瘤边缘的划定,从而提高了有丝分裂细胞检测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e83a/3678741/b3957236017c/JPI-4-1-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验