National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Appl Environ Microbiol. 2013 Aug;79(16):5013-22. doi: 10.1128/AEM.01527-13. Epub 2013 Jun 14.
Here, we investigate the endosymbiotic microbiota of the Macrosteles leafhoppers M. striifrons and M. sexnotatus, known as vectors of phytopathogenic phytoplasmas. PCR, cloning, sequencing, and phylogenetic analyses of bacterial 16S rRNA genes identified two obligate endosymbionts, "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola," and five facultative endosymbionts, Wolbachia, Rickettsia, Burkholderia, Diplorickettsia, and a novel bacterium belonging to the Rickettsiaceae, from the leafhoppers. "Ca. Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" exhibited 100% infection frequencies in the host species and populations and were separately harbored within different bacteriocytes that constituted a pair of coherent bacteriomes in the abdomen of the host insects, as in other deltocephaline leafhoppers. Wolbachia, Rickettsia, Burkholderia, Diplorickettsia, and the novel Rickettsiaceae bacterium exhibited infection frequencies at 7%, 31%, 12%, 0%, and 24% in M. striifrons and at 20%, 0%, 0%, 20%, and 0% in M. sexnotatus, respectively. Although undetected in the above analyses, phytoplasma infections were detected in 16% of M. striifrons and 60% of M. sexnotatus insects by nested PCR of 16S rRNA genes. Two genetically distinct phytoplasmas, namely, "Candidatus Phytoplasma asteris," associated with aster yellows and related plant diseases, and "Candidatus Phytoplasma oryzae," associated with rice yellow dwarf disease, were identified from the leafhoppers. These results highlight strikingly complex endosymbiotic microbiota of the Macrosteles leafhoppers and suggest ecological interactions between the obligate endosymbionts, the facultative endosymbionts, and the phytopathogenic phytoplasmas within the same host insects, which may affect vector competence of the leafhoppers.
在这里,我们研究了已知为植原体病原物载体的长头叶蝉 Macrosteles striifrons 和 M. sexnotatus 的内共生微生物群。通过细菌 16S rRNA 基因的 PCR、克隆、测序和系统发育分析,从叶蝉中鉴定出两种专性内共生体“Candidatus Sulcia muelleri”和“Candidatus Nasuia deltocephalinicola”,以及五种兼性内共生体 Wolbachia、Rickettsia、Burkholderia、Diplorickettsia 和一种属于 Rickettsiaceae 的新型细菌。“Ca. Sulcia muelleri”和“Ca. Nasuia deltocephalinicola”在宿主物种和种群中的感染频率均为 100%,并分别存在于构成宿主昆虫腹部一对连贯细菌体的不同细菌细胞中,与其他长头叶蝉一样。Wolbachia、Rickettsia、Burkholderia、Diplorickettsia 和新型 Rickettsiaceae 细菌在 M. striifrons 中的感染频率分别为 7%、31%、12%、0%和 24%,在 M. sexnotatus 中的感染频率分别为 20%、0%、0%、20%和 0%。尽管在上述分析中未检测到,但通过嵌套 16S rRNA 基因 PCR 检测到 16%的 M. striifrons 和 60%的 M. sexnotatus 昆虫感染了植原体。从叶蝉中鉴定出两种遗传上不同的植原体,即与 aster yellows 和相关植物病害相关的“Candidatus Phytoplasma asteris”和与水稻黄矮病相关的“Candidatus Phytoplasma oryzae”。这些结果突出了长头叶蝉极其复杂的内共生微生物群,并表明在同一宿主昆虫体内专性内共生体、兼性内共生体和植原体病原物之间存在生态相互作用,这可能影响叶蝉的媒介能力。