Suppr超能文献

将快感缺失映射到强化学习:一项行为荟萃分析。

Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis.

作者信息

Huys Quentin Jm, Pizzagalli Diego A, Bogdan Ryan, Dayan Peter

机构信息

Gatsby Computational Neuroscience Unit, UCL, London, UK.

出版信息

Biol Mood Anxiety Disord. 2013 Jun 19;3(1):12. doi: 10.1186/2045-5380-3-12.

Abstract

BACKGROUND

Depression is characterised partly by blunted reactions to reward. However, tasks probing this deficiency have not distinguished insensitivity to reward from insensitivity to the prediction errors for reward that determine learning and are putatively reported by the phasic activity of dopamine neurons. We attempted to disentangle these factors with respect to anhedonia in the context of stress, Major Depressive Disorder (MDD), Bipolar Disorder (BPD) and a dopaminergic challenge.

METHODS

Six behavioural datasets involving 392 experimental sessions were subjected to a model-based, Bayesian meta-analysis. Participants across all six studies performed a probabilistic reward task that used an asymmetric reinforcement schedule to assess reward learning. Healthy controls were tested under baseline conditions, stress or after receiving the dopamine D2 agonist pramipexole. In addition, participants with current or past MDD or BPD were evaluated. Reinforcement learning models isolated the contributions of variation in reward sensitivity and learning rate.

RESULTS

MDD and anhedonia reduced reward sensitivity more than they affected the learning rate, while a low dose of the dopamine D2 agonist pramipexole showed the opposite pattern. Stress led to a pattern consistent with a mixed effect on reward sensitivity and learning rate.

CONCLUSION

Reward-related learning reflected at least two partially separable contributions. The first related to phasic prediction error signalling, and was preferentially modulated by a low dose of the dopamine agonist pramipexole. The second related directly to reward sensitivity, and was preferentially reduced in MDD and anhedonia. Stress altered both components. Collectively, these findings highlight the contribution of model-based reinforcement learning meta-analysis for dissecting anhedonic behavior.

摘要

背景

抑郁症的部分特征是对奖励的反应迟钝。然而,探究这种缺陷的任务尚未区分对奖励的不敏感与对奖励预测误差的不敏感,奖励预测误差决定学习,并且据推测由多巴胺能神经元的相位活动报告。我们试图在压力、重度抑郁症(MDD)、双相情感障碍(BPD)和多巴胺能挑战的背景下,就快感缺失来厘清这些因素。

方法

对涉及392个实验环节的六个行为数据集进行基于模型的贝叶斯荟萃分析。所有六项研究中的参与者都执行了一项概率奖励任务,该任务使用非对称强化计划来评估奖励学习。健康对照在基线条件、压力下或接受多巴胺D2激动剂普拉克索后进行测试。此外,对当前或过去患有MDD或BPD的参与者进行了评估。强化学习模型分离了奖励敏感性和学习率变化的贡献。

结果

MDD和快感缺失对奖励敏感性的降低幅度大于对学习率的影响,而低剂量的多巴胺D2激动剂普拉克索则呈现相反的模式。压力导致的模式与对奖励敏感性和学习率的混合效应一致。

结论

与奖励相关的学习反映了至少两种部分可分离的贡献。第一种与相位预测误差信号有关,并且优先受到低剂量多巴胺激动剂普拉克索的调节。第二种与奖励敏感性直接相关,并且在MDD和快感缺失中优先降低。压力改变了这两个组成部分。总体而言,这些发现突出了基于模型的强化学习荟萃分析对剖析快感缺失行为的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce07/3701611/bfa266a89a7f/2045-5380-3-12-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验