Suppr超能文献

基于 4D 患者数据的初步研究中用于无监督特征学习和多器官检测的堆叠自动编码器。

Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data.

机构信息

Institute of Cancer Rearch Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1930-43. doi: 10.1109/TPAMI.2012.277.

Abstract

Medical image analysis remains a challenging application area for artificial intelligence. When applying machine learning, obtaining ground-truth labels for supervised learning is more difficult than in many more common applications of machine learning. This is especially so for datasets with abnormalities, as tissue types and the shapes of the organs in these datasets differ widely. However, organ detection in such an abnormal dataset may have many promising potential real-world applications, such as automatic diagnosis, automated radiotherapy planning, and medical image retrieval, where new multimodal medical images provide more information about the imaged tissues for diagnosis. Here, we test the application of deep learning methods to organ identification in magnetic resonance medical images, with visual and temporal hierarchical features learned to categorize object classes from an unlabeled multimodal DCE-MRI dataset so that only a weakly supervised training is required for a classifier. A probabilistic patch-based method was employed for multiple organ detection, with the features learned from the deep learning model. This shows the potential of the deep learning model for application to medical images, despite the difficulty of obtaining libraries of correctly labeled training datasets and despite the intrinsic abnormalities present in patient datasets.

摘要

医学图像分析仍然是人工智能的一个具有挑战性的应用领域。在应用机器学习时,获得监督学习的真实标签比在许多更常见的机器学习应用中更困难。对于具有异常的数据集尤其如此,因为这些数据集中的组织类型和器官形状差异很大。然而,在这样的异常数据集上进行器官检测可能具有许多有前途的实际应用,例如自动诊断、自动放射治疗计划和医学图像检索,其中新的多模态医学图像为成像组织的诊断提供了更多信息。在这里,我们测试了深度学习方法在磁共振医学图像中器官识别的应用,学习视觉和时间层次特征,从无标签的多模态 DCE-MRI 数据集中对目标类进行分类,因此仅需要对分类器进行弱监督训练。采用基于概率补丁的方法进行多器官检测,利用从深度学习模型中学习到的特征。这表明深度学习模型在医学图像中的应用具有潜力,尽管获得正确标记的训练数据集库具有一定难度,并且患者数据集存在固有异常。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验