Suppr超能文献

刺激宽度对经颅磁刺激诱导的模拟电场的影响。

The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation.

机构信息

Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Reinier Postlaan 4, 6525 CG Nijmegen, The Netherlands.

出版信息

Phys Med Biol. 2013 Jul 21;58(14):4881-96. doi: 10.1088/0031-9155/58/14/4881. Epub 2013 Jun 21.

Abstract

Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location.

摘要

容积传导模型有助于获取经颅磁刺激诱导的电场分布知识。详细模型的一个方面是对皮质表面几何形状的准确描述。由于其估计比较困难,因此了解几何形状需要精确到何种程度是很重要的。以前的研究仅考虑了忽略脑脊液(CSF)和灰质(Thielscher 等人,2011 年《神经影像》54 234-43;Bijsterbosch 等人,2012 年《医学与生物工程计算》50 671-81)之间完整边界或调整整个大脑(Wagner 等人,2008 年《实验性大脑研究》186 539-50)的情况下产生的差异。然而,由于 CSF 的高导电性,可以预期脑回宽度的改变已经会对电场的分布产生重大影响。为了回答这个问题,本研究系统地改变了基于 T1、T2 和弥散加权磁共振图像的高度逼真的头部模型的脑回宽度。该研究表明,脑回宽度的改变不会导致大多数电场值的差异较大。然而,脑回宽度的显著夸大也会导致计算场强的高估,即使在远离目标位置的位置也是如此。

相似文献

1
The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation.
Phys Med Biol. 2013 Jul 21;58(14):4881-96. doi: 10.1088/0031-9155/58/14/4881. Epub 2013 Jun 21.
2
Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.
Neuroimage. 2011 Jan 1;54(1):234-43. doi: 10.1016/j.neuroimage.2010.07.061. Epub 2010 Aug 1.
3
Real-time estimation of electric fields induced by transcranial magnetic stimulation with deep neural networks.
Brain Stimul. 2019 Nov-Dec;12(6):1500-1507. doi: 10.1016/j.brs.2019.06.015. Epub 2019 Jun 17.
4
The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
Neuroimage Clin. 2017 Apr 18;15:106-117. doi: 10.1016/j.nicl.2017.04.014. eCollection 2017.
5
Visualization of the electric field evoked by transcranial electric stimulation during a craniotomy using the finite element method.
J Neurosci Methods. 2015 Dec 30;256:157-67. doi: 10.1016/j.jneumeth.2015.09.014. Epub 2015 Sep 29.
6
Estimation of individually induced e-field strength during transcranial electric stimulation using the head circumference.
Brain Stimul. 2021 Sep-Oct;14(5):1055-1058. doi: 10.1016/j.brs.2021.07.001. Epub 2021 Jul 8.
8
The effect of local anatomy on the electric field induced by TMS: evaluation at 14 different target sites.
Med Biol Eng Comput. 2014 Oct;52(10):873-83. doi: 10.1007/s11517-014-1190-6. Epub 2014 Aug 28.
9
Effects of coil orientation on the electric field induced by TMS over the hand motor area.
Phys Med Biol. 2014 Jan 6;59(1):203-18. doi: 10.1088/0031-9155/59/1/203. Epub 2013 Dec 13.
10
[The influence of tissue conductivity on the calculation of electric field in the transcranial magnetic stimulation head model].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):401-408. doi: 10.7507/1001-5515.202211070.

引用本文的文献

1
Group optimization methods for dose planning in tES.
J Neural Eng. 2025 Aug 14;22(4):046045. doi: 10.1088/1741-2552/adf887.
2
Involvement of aSPOC in the Online Updating of Reach-to-Grasp to Mechanical Perturbations of Hand Transport.
J Neurosci. 2025 Mar 19;45(12):e0173242025. doi: 10.1523/JNEUROSCI.0173-24.2025.
3
How to assess the accuracy of volume conduction models? A validation study with stereotactic EEG data.
Front Hum Neurosci. 2024 Feb 12;18:1279183. doi: 10.3389/fnhum.2024.1279183. eCollection 2024.
4
Single-pulse transcranial magnetic stimulation for assessment of motor development in infants with early brain injury.
Expert Rev Med Devices. 2024 Mar;21(3):179-186. doi: 10.1080/17434440.2023.2299310. Epub 2024 Jan 3.
5
Electric Field Modeling in Personalizing Transcranial Magnetic Stimulation Interventions.
Biol Psychiatry. 2024 Mar 15;95(6):494-501. doi: 10.1016/j.biopsych.2023.11.022. Epub 2023 Dec 5.
6
Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study.
Neuroimage. 2023 Nov 1;281:120379. doi: 10.1016/j.neuroimage.2023.120379. Epub 2023 Sep 15.
8
UncertainSCI: Uncertainty quantification for computational models in biomedicine and bioengineering.
Comput Biol Med. 2023 Jan;152:106407. doi: 10.1016/j.compbiomed.2022.106407. Epub 2022 Dec 5.
9
Uncertainty quantification of TMS simulations considering MRI segmentation errors.
J Neural Eng. 2022 Feb 8. doi: 10.1088/1741-2552/ac52d1.
10
DUNEuro-A software toolbox for forward modeling in bioelectromagnetism.
PLoS One. 2021 Jun 4;16(6):e0252431. doi: 10.1371/journal.pone.0252431. eCollection 2021.

本文引用的文献

1
Investigation of brain tissue segmentation error and its effect on EEG source localization.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1522-5. doi: 10.1109/EMBC.2012.6346231.
2
Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation.
Phys Med Biol. 2012 Dec 7;57(23):7753-65. doi: 10.1088/0031-9155/57/23/7753. Epub 2012 Nov 6.
4
Anisotropic partial volume CSF modeling for EEG source localization.
Neuroimage. 2012 Sep;62(3):2161-70. doi: 10.1016/j.neuroimage.2012.05.055. Epub 2012 May 29.
5
A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters.
Phys Med Biol. 2012 Apr 21;57(8):2169-88. doi: 10.1088/0031-9155/57/8/2169. Epub 2012 Mar 28.
6
How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.
Neuroimage. 2011 Oct 1;58(3):849-59. doi: 10.1016/j.neuroimage.2011.06.069. Epub 2011 Jul 1.
8
Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.
Neuroimage. 2011 Jan 1;54(1):234-43. doi: 10.1016/j.neuroimage.2010.07.061. Epub 2010 Aug 1.
9
A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation.
J Neurosci Methods. 2009 Apr 30;179(1):111-20. doi: 10.1016/j.jneumeth.2009.01.010. Epub 2009 Jan 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验