Department of Physiology, School of Medical Sciences, University of New South Wales-UNSW, Sydney, NSW 2052, Australia.
Eur Biophys J. 2013 Aug;42(8):631-46. doi: 10.1007/s00249-013-0911-3. Epub 2013 Jun 21.
Accurate potential measurements in electrophysiological experiments require correction for liquid junction potentials (LJPs), and, in patch-clamping especially, these can often be ~5-10 mV or more. They can be either calculated, if ion mobilities are known, or measured directly. We describe an optimised system to directly measure LJPs with a patch-clamp amplifier, using as a reference electrode, a freshly-cut 3 M KCl-agar salt-bridge (in polyethylene tubing) with its tip cut off by at least 5 mm during solution changes to eliminate its solution-history-dependent effects. We quantify such history-dependent effects and complement this with a de-novo theoretical analysis of salt diffusion to and from the salt-bridge. Our analysis and experimental results validate the optimised methodology for measuring LJPs, and the use of the Henderson equation for accurately calculating them. The use of this equation is also assessed and generally validated in the light of rigorous Nernst-Planck-Poisson and other numerical simulations and analytical studies of LJPs over recent decades. Digitizing, recording and amplifying the measured potentials increases their accuracy. The measured potentials still need correction for small, well-defined calculable, shifts in LJPs at the 3 M KCl-agar reference. Using this technique, we have measured changes in LJPs for diluted solutions of NaCl, LiCl, KCl, CsCl and NaF, obtaining excellent agreement within ±0.1 mV of predicted values, calculated using ion activities. Our de novo LJP measurements of biionic combinations of the above undiluted salts, and NaI and NaF (with halide anions I⁻ and F⁻), generally also gave excellent agreement with predicted values.
在电生理实验中,准确的电位测量需要校正液接电位(LJP),特别是在膜片钳技术中,LJP 通常为 5-10mV 或更高。如果离子迁移率已知,则可以计算 LJP,或者直接测量。我们描述了一种使用膜片钳放大器直接测量 LJP 的优化系统,该系统使用新切割的 3M KCl-琼脂盐桥(在聚乙烯管中)作为参考电极,在溶液更换过程中,至少将其尖端剪掉 5mm,以消除其与溶液历史相关的影响。我们量化了这种与溶液历史相关的影响,并通过盐扩散到盐桥和从盐桥扩散的新理论分析对此进行了补充。我们的分析和实验结果验证了测量 LJP 的优化方法,以及使用 Henderson 方程准确计算 LJP 的方法。还评估了该方程的使用情况,并根据最近几十年对 LJP 的严格的 Nernst-Planck-Poisson 和其他数值模拟和分析研究,对其进行了普遍验证。数字化、记录和放大测量的电位可以提高其准确性。仍需要对 3M KCl-琼脂参考的 LJP 进行小的、可定义的、可计算的偏移校正。使用该技术,我们测量了 NaCl、LiCl、KCl、CsCl 和 NaF 稀释溶液中的 LJP 变化,与使用离子活度计算得出的预测值的偏差在±0.1mV 以内,结果非常吻合。我们对上述未稀释盐的双离子组合以及 NaI 和 NaF(具有卤化物阴离子 I⁻和 F⁻)的新 LJP 测量结果通常也与预测值非常吻合。