Suppr超能文献

使用磁共振成像评估肾功能的框架。

Framework for estimating renal function using magnetic resonance imaging.

作者信息

Ishikawa Masahiro, Inoue Tsutomu, Kozawa Eito, Okada Hirokazu, Kobayashi Naoki

机构信息

Saitama Medical University, Saitama, Japan.

出版信息

J Med Imaging (Bellingham). 2022 Mar;9(2):024501. doi: 10.1117/1.JMI.9.2.024501. Epub 2022 Mar 15.

Abstract

Nephrologists have empirically predicted renal function from renal morphology. In diagnosing a case of renal dysfunction of unknown course, acute kidney injury and chronic kidney disease are diagnosed from blood tests and an imaging study including magnetic resonance imaging (MRI), and an examination/treatment policy is determined. A framework for the estimation of renal function from water images obtained using the Dixon method is proposed to provide information that helps clinicians reach a diagnosis by accurately estimating renal function on the basis of renal MRI. The proposed framework consists of four steps. First, the kidney area is extracted by MRI using the Dixon method with a U-net by deep learning. Second, the extracted renal region is registered with the target mask. Third, the kidney features are calculated based on the target mask classification information created by a specialist. Fourth, the estimated glomerular filtration rate (eGFR) representing the renal function is estimated using a regression support vector machine from the calculated features. For the accuracy evaluation, we conducted an experiment to estimate the eGFR when MRI was performed and the eGFR slope, which is the annual rate of decline in eGFR. When the accuracy was evaluated for 165 subjects, the eGFR was estimated to have a root mean square error (RMSE) of 11.99 and a correlation coefficient of 0.83. Moreover, the eGFR slope was estimated to have an RMSE of 4.8 and a correlation coefficient of 0.5. Therefore, the proposed method shows the possibility of estimating the prognosis of renal function based on water images obtained by the Dixon method.

摘要

肾病学家一直根据肾脏形态凭经验预测肾功能。在诊断一例病程不明的肾功能障碍时,通过血液检查以及包括磁共振成像(MRI)在内的影像学检查来诊断急性肾损伤和慢性肾病,并确定检查/治疗策略。本文提出了一个根据使用狄克逊法获得的水成像来估算肾功能的框架,以便通过基于肾脏MRI准确估算肾功能来提供有助于临床医生做出诊断的信息。所提出的框架包括四个步骤。首先,使用深度学习的U-net通过MRI采用狄克逊法提取肾脏区域。其次,将提取的肾脏区域与目标掩码进行配准。第三,根据专家创建的目标掩码分类信息计算肾脏特征。第四,使用回归支持向量机根据计算出的特征估算代表肾功能的估计肾小球滤过率(eGFR)。为了进行准确性评估,我们进行了一项实验,以估算进行MRI检查时的eGFR以及eGFR斜率(即eGFR的年下降率)。在对165名受试者进行准确性评估时,估算出的eGFR的均方根误差(RMSE)为11.99,相关系数为0.83。此外,估算出的eGFR斜率的RMSE为4.8,相关系数为0.5。因此,所提出的方法显示了根据狄克逊法获得的水成像估算肾功能预后的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ae/8923691/9965c0f187d7/JMI-009-024501-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验