Suppr超能文献

一种基于卷积神经网络的新型 CAD 系统,用于早期评估移植肾功能障碍。

A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction.

机构信息

Bioengineering Department, University of Louisville, Louisville, KY, USA.

Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt.

出版信息

Sci Rep. 2019 Apr 11;9(1):5948. doi: 10.1038/s41598-019-42431-3.

Abstract

This paper introduces a deep-learning based computer-aided diagnostic (CAD) system for the early detection of acute renal transplant rejection. For noninvasive detection of kidney rejection at an early stage, the proposed CAD system is based on the fusion of both imaging markers and clinical biomarkers. The former are derived from diffusion-weighted magnetic resonance imaging (DW-MRI) by estimating the apparent diffusion coefficients (ADC) representing the perfusion of the blood and the diffusion of the water inside the transplanted kidney. The clinical biomarkers, namely: creatinine clearance (CrCl) and serum plasma creatinine (SPCr), are integrated into the proposed CAD system as kidney functionality indexes to enhance its diagnostic performance. The ADC maps are estimated for a user-defined region of interest (ROI) that encompasses the whole kidney. The estimated ADCs are fused with the clinical biomarkers and the fused data is then used as an input to train and test a convolutional neural network (CNN) based classifier. The CAD system is tested on DW-MRI scans collected from 56 subjects from geographically diverse populations and different scanner types/image collection protocols. The overall accuracy of the proposed system is 92.9% with 93.3% sensitivity and 92.3% specificity in distinguishing non-rejected kidney transplants from rejected ones. These results demonstrate the potential of the proposed system for a reliable non-invasive diagnosis of renal transplant status for any DW-MRI scans, regardless of the geographical differences and/or imaging protocol.

摘要

本文介绍了一种基于深度学习的计算机辅助诊断 (CAD) 系统,用于早期检测急性肾移植排斥反应。为了在早期非侵入性地检测肾脏排斥,所提出的 CAD 系统基于融合成像标志物和临床生物标志物。前者是通过估计代表血液灌注和水在移植肾脏内扩散的表观扩散系数 (ADC) ,从扩散加权磁共振成像 (DW-MRI) 中得出的。临床生物标志物,即肌酐清除率 (CrCl) 和血清血浆肌酐 (SPCr) ,作为肾功能指标集成到所提出的 CAD 系统中,以提高其诊断性能。ADC 图是为包含整个肾脏的用户定义感兴趣区域 (ROI) 估计的。估计的 ADC 与临床生物标志物融合,然后将融合数据用作基于卷积神经网络 (CNN) 的分类器的输入进行训练和测试。该 CAD 系统在来自地理上不同人群和不同扫描仪类型/图像采集协议的 56 个受试者的 DW-MRI 扫描上进行了测试。所提出的系统的总体准确性为 92.9%,在区分未排斥的肾脏移植和排斥的肾脏移植方面具有 93.3%的灵敏度和 92.3%的特异性。这些结果表明,该系统有潜力用于任何 DW-MRI 扫描的可靠的非侵入性诊断肾脏移植状态,而不受地理差异和/或成像协议的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e63/6459833/3bf2e48775a3/41598_2019_42431_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验