Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore.
PLoS One. 2013 Jun 14;8(6):e65736. doi: 10.1371/journal.pone.0065736. Print 2013.
Pathological myopia is one of the leading causes of blindness worldwide. The condition is particularly prevalent in Asia. Unlike myopia, pathological myopia is accompanied by degenerative changes in the retina, which if left untreated can lead to irrecoverable vision loss. The accurate diagnosis of pathological myopia will enable timely intervention and facilitate better disease management to slow down the progression of the disease. Current methods of assessment typically consider only one type of data, such as that from retinal imaging. However, different kinds of data, including that of genetic, demographic and clinical information, may contain different and independent information, which can provide different perspectives on the visually observable, genetic or environmental mechanisms for the disease. The combination of these potentially complementary pieces of information can enhance the understanding of the disease, providing a holistic appreciation of the multiple risks factors as well as improving the detection outcomes. In this study, we propose a computer-aided diagnosis framework for Pathological Myopia diagnosis through Biomedical and Image Informatics(PM-BMII). Through the use of multiple kernel learning (MKL) methods, PM-BMII intelligently fuses heterogeneous biomedical information to improve the accuracy of disease diagnosis. Data from 2,258 subjects of a population-based study, in which demographic and clinical information, retinal fundus imaging data and genotyping data were collected, are used to evaluate the proposed framework. The experimental results show that PM-BMII achieves an AUC of 0.888, outperforming the detection results from the use of demographic and clinical information 0.607 (increase 46.3%, p<0.005), genotyping data 0.774 (increase 14.7%, P<0.005) or imaging data 0.852 (increase 4.2%, p=0.19) alone. The accuracy of the results obtained demonstrates the feasibility of using heterogeneous data for improved disease diagnosis through our proposed PM-BMII framework.
病理性近视是全球致盲的主要原因之一。这种情况在亚洲尤为普遍。与近视不同,病理性近视伴有视网膜的退行性变化,如果不加以治疗,可能会导致不可逆转的视力丧失。病理性近视的准确诊断可以实现及时干预,并有助于更好地疾病管理,从而减缓疾病的进展。目前的评估方法通常只考虑一种类型的数据,例如视网膜成像数据。然而,不同类型的数据,包括遗传、人口统计学和临床信息,可能包含不同且独立的信息,这些信息可以从视觉上可观察到的、遗传的或环境的疾病机制方面提供不同的视角。这些潜在的互补信息的结合可以增强对疾病的理解,提供对多种风险因素的全面认识,并改善检测结果。在这项研究中,我们通过生物医学和图像信息学(PM-BMII)提出了一种病理性近视诊断的计算机辅助诊断框架。通过使用多核学习(MKL)方法,PM-BMII 智能地融合异构生物医学信息,以提高疾病诊断的准确性。该框架使用了一项基于人群的研究中的 2258 名受试者的数据,其中收集了人口统计学和临床信息、眼底图像数据和基因分型数据,用于评估所提出的框架。实验结果表明,PM-BMII 的 AUC 为 0.888,优于使用人口统计学和临床信息(增加 46.3%,p<0.005)、基因分型数据(增加 14.7%,P<0.005)或图像数据(增加 4.2%,p=0.19)单独进行疾病诊断的结果。结果的准确性证明了通过我们提出的 PM-BMII 框架使用异构数据改善疾病诊断的可行性。