University of California, Berkeley, California, USA.
Nat Neurosci. 2013 Jul;16(7):816-23. doi: 10.1038/nn.3424. Epub 2013 Jun 25.
The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions.
光学神经科学革命正在改变我们研究神经回路的方式。通过提供一种精确的方法来操纵内源性神经元信号蛋白,它也有可能改变我们对分子神经科学的理解。化学生物学的最新进展产生了光敏感化合物,可以光调节神经元之间和内部信号的各种蛋白质。光药理学的化学工具包括笼状激动剂和拮抗剂以及可逆光致开关配体。这些试剂作用于电压门控离子通道和神经递质受体,能够以高度的时空精度控制神经元信号。通过将光开关分子共价连接到基因标记的蛋白质上,新兴的光遗传药理学方法允许在靶向神经元亚群中进行生物化学精确控制。既然可用于操纵内源性神经元信号蛋白的工具已经可用,它们就可以在体内实施,以增强我们对大脑功能和功能障碍的分子基础的理解。