Suppr超能文献

光遗传学药理学用于控制天然神经元信号蛋白。

Optogenetic pharmacology for control of native neuronal signaling proteins.

机构信息

University of California, Berkeley, California, USA.

出版信息

Nat Neurosci. 2013 Jul;16(7):816-23. doi: 10.1038/nn.3424. Epub 2013 Jun 25.

Abstract

The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions.

摘要

光学神经科学革命正在改变我们研究神经回路的方式。通过提供一种精确的方法来操纵内源性神经元信号蛋白,它也有可能改变我们对分子神经科学的理解。化学生物学的最新进展产生了光敏感化合物,可以光调节神经元之间和内部信号的各种蛋白质。光药理学的化学工具包括笼状激动剂和拮抗剂以及可逆光致开关配体。这些试剂作用于电压门控离子通道和神经递质受体,能够以高度的时空精度控制神经元信号。通过将光开关分子共价连接到基因标记的蛋白质上,新兴的光遗传药理学方法允许在靶向神经元亚群中进行生物化学精确控制。既然可用于操纵内源性神经元信号蛋白的工具已经可用,它们就可以在体内实施,以增强我们对大脑功能和功能障碍的分子基础的理解。

相似文献

3
Synapses in the spotlight with synthetic optogenetics.合成光遗传学聚焦突触
EMBO Rep. 2017 May;18(5):677-692. doi: 10.15252/embr.201744010. Epub 2017 Apr 10.
4
Optical control of neuronal ion channels and receptors.光控神经元离子通道和受体。
Nat Rev Neurosci. 2019 Sep;20(9):514-532. doi: 10.1038/s41583-019-0197-2.
5
Flipping the Photoswitch: Ion Channels Under Light Control.翻转光开关:光控离子通道
Adv Exp Med Biol. 2015;869:101-17. doi: 10.1007/978-1-4939-2845-3_6.
6
Optogenetics and pharmacogenetics: principles and applications.光遗传学与药物遗传学:原理与应用
Am J Physiol Regul Integr Comp Physiol. 2017 Dec 1;313(6):R633-R645. doi: 10.1152/ajpregu.00091.2017. Epub 2017 Aug 9.
8
Recent advances in cellular optogenetics for photomedicine.细胞光遗传学在光医学中的最新进展。
Adv Drug Deliv Rev. 2022 Sep;188:114457. doi: 10.1016/j.addr.2022.114457. Epub 2022 Jul 16.
9
Optical developments for optogenetics.光遗传学的光学发展。
Biol Cell. 2013 Oct;105(10):443-64. doi: 10.1111/boc.201200087. Epub 2013 Jul 26.

引用本文的文献

6
Reversible Control of Native GluN2B-Containing NMDA Receptors with Visible Light.可见光可逆调控天然 GluN2B 型 NMDA 受体。
ACS Chem Neurosci. 2024 Sep 18;15(18):3321-3343. doi: 10.1021/acschemneuro.4c00247. Epub 2024 Sep 6.

本文引用的文献

1
Optical control of metabotropic glutamate receptors.代谢型谷氨酸受体的光学控制。
Nat Neurosci. 2013 Apr;16(4):507-16. doi: 10.1038/nn.3346. Epub 2013 Mar 3.
2
Photochemical activation of TRPA1 channels in neurons and animals.光化学激活神经元和动物中的 TRPA1 通道。
Nat Chem Biol. 2013 Apr;9(4):257-63. doi: 10.1038/nchembio.1183. Epub 2013 Feb 10.
8
Azo-propofols: photochromic potentiators of GABA(A) receptors.偶氮丙泊酚:GABA(A) 受体光致变色增强剂。
Angew Chem Int Ed Engl. 2012 Oct 15;51(42):10500-4. doi: 10.1002/anie.201205475. Epub 2012 Sep 11.
9
Tuning photochromic ion channel blockers.调谐光致变色离子通道阻断剂。
ACS Chem Neurosci. 2011 Sep 21;2(9):536-43. doi: 10.1021/cn200037p. Epub 2011 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验